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1 Learning goals for this lesson

The following is a list of basic ideas that were covered during this lesson. You must be fairly conversant with
all of them now. If you have any questions, please post them on Piazza. The link is piazza.com/phys211.

• The idea of centripetal acceleration as a force directed towards the center required for circular motion;

• How do we describe motion in a circular path - angles, angular velocity, etc.;

• Putting together friction and circular motion - examples of cars, banked roads.

2 A quick summary

This section does not aim at being comprehensive. It’s more of a slightly expanded version of the above,
and primary serves to jog your memory, and be a quick look back place in case you forget something. If any
of this is unclear, please post a question!

We started the class with an activity where you were required to use a mallet to try and move a bowling
ball in a circle. While it was tricky to get this working, we realized that in order to get it going in a circle,
we need to keep hitting it “inwards” or towards the center of the circle. This in general is true. In circular
motion, even if the speed of the object stays constant, the direction keeps changing, therefore producing
a change in the velocity (remember velocity is a vector and has direction). The change is always directed
towards the center of the circle as can be seen by drawing two adjacent velocity vectors and looking at the
difference geometrically as shown in fig. 1
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Figure 1: Difference in nearby velocities for circular motion.
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We will later use this picture to calculate the magnitude of this acceleration. Before we get there, however,
we need to learn how to describe motion in a circular path. We will only be concerned with particle moving
in a plane, i.e., 2D circular motion. Figure 2 shows an object moving in a circle. A circle is defined by a
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Figure 2: Circular motion.

radius, and nothing else. A collection of dots a fixed distance away (the “radius”) from a point (the “center”)
is a circle. When an object moves in a circle, it’s velocity is always directed along the tangent to the circle.
So is it’s displacement. If the particle speeds up or slows down, then this tangential velocity changes with
time, producing a tangential acceleration. Note, that this is different from the centripetal acceleration that
has to do with the direction of the tangential velocity changing. It is directed radially towards the center. As
shown in fig. 2, and as we studied earlier for 2D motion, we can locate the particle by supplying it’s x and y
coordinates. As the particle goes around the circle, the x and y coordinates both change, and in fact oscillate
back and forth. We could continue to obtain vx, vy and so on. However, there is an equivalent description
that can be used. In a circle, we can locate a point by simply specifying at what angle it lies (angles being
conventionally measure from the x-axis counterclockwise). Since the radius of the circle is know, we know
exactly where this point is. The tangential velocity is then, the rate at which this point moves around in a
circle, in other words, the rate at which the angle increases. If we denote the angle by θ, then the rate at
which the angle increases with time, is given by

ω ≡ dθ

dt
(1)

and ω is called the angular velocity for obvious reasons. Note that since θ or angle is measured in radians,
angular velocity is measured in rad/s. There is no length associated with angular velocity. If the tangential
velocity changes w.r.t time, then we understand that the particle either speeds up or slows down in the
tangential direction. We can define this change by

α =
dω

dt
(2)

and α is called the angular acceleration with the units rad/s2. So, for uniform circular motion, i.e., with
constant speed or tangential velocity, α = 0.

An important relation to remember about a circle is that the arc length ∆l enclosed by an angle ∆θ is
R∆θ, R being the radius, and ∆θ being measure in radians. It’s a simple geometric fact about circles. The
tangential velocity is then the rate at which an arc length is covered per unit time, giving us

vt =
dl

dt
=

d(Rθ)

dt
= R

dθ

dt
= Rω. (3)
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Similarly, at = Rα.
We can now proceed to calculate the centripetal acceleration ac that makes the particle go in a circle.

Remember, this is due to the change in the direction of the tangential velocity as we go around the circle.
Figure 1 shows a particle in circular motion, having traversed a small angle ∆θ in a small time ∆t. During
this motion, the tangential velocity changes direction. The figure shows that the difference ~v2 − ~v1 is given
by a vector pointing towards the center of the circle (see fig. 1) with magnitude vt∆θ, vt being the constant
tangential velocity, i.e., |~v1| = |~v2| = vt. The centripetal acceleration is this difference in velocity per unit
time, i.e.

ac =
|~v2 − ~v1|

∆t
= vt

∆θ

∆t
= vtω =

v2t
R

= Rω2 (4)

and points to the center of the circle. We’ve thus calculated the centripetal acceleration then every object
in circular motion must undergo.

Note that we have as yet said nothing about what provides this acceleration. It of course is different in
different cases. In the case of the ball and mallet, you striking the ball repeatedly provides a centripetal
acceleration (although it’s not really constant in this case). In the case of a ball being swung around on a
string, the tension in the string provides the centripetal acceleration. We’ll see three examples below.

Example 1 - ball on a string

A ball of mass m is swung in a horizontal circle or radius R and a speed v on a massless string. What is
the tension in the string? A free body diagram is shown in fig. 3 Tension is the only force keeping the ball

T

v

Figure 3: Ball on string
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going in a circle, so Newton’s law for the ball is

T = mac =
mv2

R
. (5)

So, that’s the tension. A ball of mass 0.1kg going in a circle of radius 0.5m with a speed of 0.5m/s for
example produces a string tension of T = 0.1× 0.52/0.5 = 0.05N .

Example 2 - car going in a circle of a horizontal road

A car of mass m is going around in a circle of radius R = 7m as shown in figure 4. If the friction co-efficient
between the tires and the road is µ = 0.6, how fast can the car go without slipping out of the curve.

v

N

mg

f = muN

Figure 4: Car going in a circle of a horizontal road.

In this question, it is important to recognize that friction is the only force preventing the car from slipping
out. So, all the centripetal acceleration is produced just by friction. It is therefore obvious that

Fmax. friction = µN = µmg = mac =
mv2

R
(6)

giving
v =

√

µgR. (7)

For the given values, we get v ≈ 6.5m/s ≈ 15mph. Any faster, and friction wouldn’t be able to provide the
necessary centripetal acceleration since it is already at its highest value and the car would slip out. As we
lower the friction coefficient the max. speed decreases, and if the road was frictionless, we get v = 0, which
means you can’t really turn!

Example 3 - car going in a circle of a banked road

To aid faster turning on curves, roads are usually banked. Let’s see how this actually helps. Figure 5 shows
the front view of a car on a banked road and the forces. Note that the normal force of the road on the car
now is at an angle and has a component in the horizontal direction pointing towards the center of the curve.
Friction also exists and it too has a component towards the center and one vertically upwards. Some of the
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Figure 5: Car on banked road

centripetal acceleration can now be potentially provided by the normal force. Let’s see how this works. In
the vertical direction there is no motion and we get

N cos θ −mg − µN sin θ = 0 =⇒ N =
mg

cos θ − µ sin θ
. (8)

In the horizontal direction, we get,

N sin θ + µN cos θ = mac =
mv2

R
. (9)

Pluggin in N from the previous equation into the above equation and solving for v, we get,

v =

√

gR
sin θ + µ cos θ

cos θ − µ sin θ
. (10)

Let’s analyze this a bit. If the angle θ = 0, then we should get the result of example 2. Putting θ = 0 in the
above equation, we get v =

√
µgR, which is indeed what we expect. Note one interesting thing now - even

if µ = 0, i.e. we’re driving on ice, we can make turns at or slower than v =
√
gR tan θ. This is basically

why roads are banked. You don’t rely on friction so much any more. However, having friction helps and you
corner faster!
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