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1 Learning goals for this lesson

The following is a list of basic ideas that were covered during this lesson. You must be fairly conversant with
all of them now. If you have any questions, please post them on Piazza. The link is piazza.com/phys211.

• Keplers laws and their meaning

• The inverse square law and Newtonian gravitation

• Gravitational potential energy

2 A quick summary

About 500 years ago, several scientists and astronomers of the time charted out the skies in a very detailed
fashion. Data was recorded on transit times of planets, comets, etc. In the same century, an astronomer
by the name of Kepler who worked with one of the very prolific astronomers of the time, Brahe, started
observing patterns in some of the recorded data. He noticed that he could come up with empirical relations
that described the motion of planets. The heliocentric view (sun at the center) of the solar system was
already well understood by then. Kepler figured out that there were intimate relations between things like
the time periods of the orbits of planets and their average distances from the sun, and other such relations.
These have now come to be known as the “Kepler’s laws” of planetary motion. There are essentially three of
them. One states that planets orbit around the sun in elliptical orbits with the sun at one of the focii of the
ellipse, as shown in 1. Further, he said that the area swept out by the radius vector (between the sun and
the planet) per unit time was a constant for a given planet. And finally, that the time period of a planet (to
make one revolution around the sun) obeyed T 2

∝ r3, where r is the “semi-major axis” of the ellipse. In the
case of a circular orbit, it is just the radius of the circle. Figure 1 shows the various geometric quantities.

Many attempts were made to explain these laws from a more fundamental standpoint - Hooke was among
others to suggest that perhaps there was a force between any two massive objects that varied as the square
of the inverse distance between the objects. The law, which finally was shown to predict Keplers laws and
elliptical orbits by Newton, came to be known as Newtons law of gravitation. It states that any two (point)
masses m1 and m2 attract each other by a force given by,

F =
Gm1m2

r2
(1)

where r is the distance between them. m1 and m2 are “gravitational masses”, and miraculously coincide
with the “inertial mass” that shows up in F = ma. The inertial mass is a measure of how difficult it is for
a given force to make an object accelerate, while the gravitational mass has to do with the gravitational
force between these masses. There is no obvious reason as to why these masses should be the same physical
quantity, but very accurate experiments (by Eötvos e.g.) have shown this equivalence to be true. The
constant G is a numerical constant, that fixes the units and provides a scale for the gravitational force. It is
called the constant of gravitation, and it is a constant of nature, like the speed of light.
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Figure 1: Elliptical orbit.

One can show that under the influence of such a force, an object can execute orbital motion in an elliptical
orbit. More complex motion is also allowed. We will only concern ourselves with circular orbits. Most planets
in our solar system have almost circular orbits, the orbits of satellites around the earth are almost circular,
so from a practical consideration, this is sufficient for now.

Consider a satellite orbiting the earth at some height h above the earth. If the mass of the satellite is m,
then the gravitational force acting on it is

F =
GMem

(Re + h)2
. (2)

If it travels in a circular orbit, then its tangential velocity is constant. The centripetal acceleration due to
the circular motion is

ac =
v2

Re + h
. (3)

Since gravity is providing the centripetal acceleration,

F = mac =⇒
GMem

(R+ h)2
=

v2

R+ h
. (4)

Solving for the velocity, we get,

v =

√

GMe

(Re + h)
. (5)

Thus, for circular orbit, the tangential velocity and radius of the orbit are related. If the height of the
satellite is very small compared to the earths radius, then, we can neglect h in Re + h to get

v =

√

GMe

Re

(6)

for a satellite near the surface. Note that near the surface can really mean 100s of km above the surface,
since the earths radius is HUGE!. Plugging in the numbers, this comes about to about 8km/s. That is the
orbital speed of a satellite near the surface. Also, if it is very close to the surface, then

F ≈
GMem

R2
e

= gm. (7)
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g of course is the acceleration due to gravity (= GMe

R2
e

) near the earths surface that we are very familiar with!

Plug in the numbers and see what you get for g. If we go far away then g changes.
Talking about going far away, it is considerable interest to understand how much work is done on raising

an object by a certain amount in the presence of gravity. We all know that if we raise an object of mass m
by a height h, then the amount of work we do is given by the gravitational potential energy, i.e., mgh. This
however is only valid when we are near the earths surface. Let’s do a general calculation of this work, and
see how it reduces to this.

Consider an object of mass m at a distance r1 from (the center of) another object of mass M . In order
to move m to a radius of r2 we have to do work, since M is trying to apply an attractive force. We have to
apply a force thats opposite to it. If we move the object very slowly, so that its acceleration is almost zero,
then the force we apply is equal and opposite to gravitational force. The work done by us is,

W =

∫ r2

r1

~F · d~r =

∫ r2

r1

GMm

r2
dr =

(

−
GMm

r2

)

−

(

−
GMm

r1

)

. (8)

This looks like the change in the quantity in brackets. That quantity we call the gravitational potential
energy, so that, the work done is equal to the change in the potential energy. Note the negative sign, and
the 1/r dependence. The potential energy still increases as we go higher or farther away. Now, how does
this reduce to mgh when we’re near the earth. Suppose r2 = r1 + h and r1 = Re. Lets also put M = Me,
the mass of the earth. Then

W = −GMem

(

1

Re + h
−

1

Re

)

= GMm
h

Re(Re + h)
. (9)

If h ≪ Re, then we can neglect it in the denominator to get,

W =
GMmh

R2
e

= mgh (10)

from the definition of g above! So indeed, our old formula works when we’re very close to the surface!
We will calculate one last thing - the initial velocity that we must impart to an object for it to leave earths

gravitational pull. Note that the negative potential energy is indicative of the fact that the object is bound
to the earth. Very far away the potential energy is zero. If we want an object to escape, then we must give
it enough energy to “reach very far away”, in other words, if we give it enough kinetic energy such that its
total energy is zero, then very far away, when its velocity is close to zero, then energy conservation demands
that its potential energy also be zero, thus making it escape from gravity. For an initial total energy of zero
on the earths surface, we need,

1

2
mv2 −

GMem

Re

= 0 (11)

giving

v =

√

2GMe

Re

. (12)

This is approximately 11km/s, and at this initial speed launched from or near the earths surface, an object
will escape.

Just as a visualization, we can think of all these different scenarios, i.e., projectile motion, orbital motion
and an object escaping as essentially the same thing with increasing initial velocities. For small velocities,
an object will fall back on the earth and execute projectile motion. For larger velocities, as the object starts
falling back, the earth curves away from beneath it, and thus the object keeps falling and essentially is in
orbit. For even higher velocities, the same thing happens, but the velocity is so high that falls to far and
escapes earths gravitational effects.

3 Additional resources

• PhET demo on gravitational force and orbits - look at http://phet.colorado.edu
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