
10/29/2006 CSCI 311 Data Structures 1

Randomized Binary Search Trees

10/29/2006 CSCI 311 Data Structures 2

Insertion at the root

10

5 18

25

7

8

9

12

15

11

Make the new item the root node
of a new tree. The old root will be
the left subtree of the new item.
The right subtree of the old root
will be the right subtree of the
new root.

10/29/2006 CSCI 311 Data Structures 3

Insertion at the root

10

5

18

25

7

8

9

12

15

11
A potential problem with this
rationale is that you may end up
with a tree that is getting
needlessly deeper and deeper,
more and more unbalanced.

What is needed is a mechanism
to restructure the tree after each
insertion so that it doesn’t
degenerate.

It is inefficient to do this globally,
but perhaps we can do something
locally that is not bad for
performance.

10/29/2006 CSCI 311 Data Structures 4

Rotations

x

yα

β γ

y

x γ

α β

Left-Rotate(T, x)

Right-Rotate(T, y)

A rotation is a local change involving two nodes and three links. Note that
although it restructures a portion of the tree, it does not change the tree’s
global properties.

It is easy to verify that the inorder traversal of the rotated tree is the same
as the original’s.

10/29/2006 CSCI 311 Data Structures 5

Insertion at the root
A

S

XE

RC

H

G

A

S

XE

RC

G

H

Right-Rotate(T, H)

A

S

XE

GC

R

H

Right-Rotate(T, R) Left-Rotate(T, E)

A

S

XG

RE

H

Right-Rotate(T, S)

C

10/29/2006 CSCI 311 Data Structures 6

Insertion at the root
A

S

XG

RE

H

Right-Rotate(T, S)

C

A

G

S

R

E

H

Left-Rotate(T, A)

C
X

G

A S

RE

HC

X

10/29/2006 CSCI 311 Data Structures 7

The basic BST operations run in O(h), where h is the height of the tree. It
is important to note that h depends on the order in which items are
inserted in the tree.

Question: What would the tree look like if the keys were inserted in
strictly increasing order?

If the order of item insertion were to follow equally likely permutations of
the possible (distinct) keys, the expected height of the tree with n
nodes would be lg n. In the next slide we will show how to make any
insertion order look random, and thus give good expected (average)
performance.

Note, however, that even when the key insertion order is random, there
is no guarantee that the height of the tree will be lg N - we may get a
bad permutation. Therefore we cannot guarantee that operations on
the BST are O(lg n).

Randomly Built BSTs

10/29/2006 CSCI 311 Data Structures 8

Randomized Insertion
We can make it look like the order of key insertion is random by

choosing the insertion point at random. Say that the number of
nodes in the current subtree is k before the insertion.

Simple recursive procedure: When inserting at the root of a subtree,
toss a biased coin:

With probability 1/(k+1), insert new key at the root of the current
subtree using the algorithm given above (there is no further
randomization for this insertion).
With probability (k/k+1), recursively apply randomized insertion
in the appropriate subtree.

nn
n

n
n

k
k

k
k

k
nk 11

1
2

2
1

1
1root}at up ends) (ofelement th Pr{ =

−
−
−

+
+

+
= L

heads
for this
element

tails for all other elements

Performance: a mix of N insertions and searches will take O(N lg N) on
average and O(N2) in the worst case.

	Insertion at the root
	Insertion at the root
	Rotations
	Insertion at the root
	Insertion at the root
	Randomly Built BSTs
	Randomized Insertion

