
The Knapsack Problem

CSCI 311 - Data Structures 2

The Knapsack Problem
Knapsack of capacity M N Types of Indivisible Items

(unlimited number of each type)

V1 V2 V3

VN

Problem: What is the selection of items that fits in the
knapsack maximizing the total value of its contents?

M

CSCI 311 - Data Structures 3

The Knapsack Problem
Type A Type B Type C

Value 100 76 54

Weight 5 4 3

N=3
M=8

8

3 4 5

5
4

3

[100] [76] [54]

0 1 0 2 1 0

5
4433 3

[154] [130] [152] [108] [130] [154]

Note:
• For each node in this tree, we have a set
of possible decisions.
• Each decision has a cost (its weight) and
leads to an associated yield.
• The goal is to find a sequence of
decisions that leads to an optimal
solution.
• The number of possible solutions is
exponential with M. We’d have to find
them all and then choose the very best.

CSCI 311 - Data Structures 4

The Knapsack Problem

The recursive nature of the problem jumps out at us when we
observe the decision tree.

The problem has optimal substructure and overlapping
sub-problems, so it is solvable with dynamic programming.

What we have to figure out is how to map the problem onto
some kind of data structure to store solutions to each sub-
problem as the tree is traversed.

CSCI 311 - Data Structures 5

The Knapsack Problem
Type A Type B Type C

Value 100 76 54
Weight 5 4 3

N=3
M=27

27

22 23 24

5 4 3
[100] [76] [54]

17
5

12

7

2

[200]
5

5

5

[300]

[0]

[400]

[500]

Question: What kind of data structure is needed to apply DP to this problem?

CSCI 311 - Data Structures 6

The Knapsack Problem
(recursive solution)

knap(M)
max = 0;
for i = 1 to N // Loop through item types

// Solve problem assuming we include
// an item of type i
do spaceLeft = M – size[i]

if spaceLeft >= 0 // if type i fits
then // Compute candidate sol’n t

t = knap(spaceLeft)+val[i]
if t > max

then max = t
return max;

CSCI 311 - Data Structures 7

The Knapsack Problem
(DP solution)

knap(M)
if maxKnown[M]!= unknown

then return maxKnown[M];

// Otherwise, result not yet known:
max = 0
for i = 1 to N // Try each item type

do spaceLeft = M – size[i]
if spaceLeft >= 0 // If item type i fits

then // Compute candidate solution t
t = knap(spaceLeft) + val[i]
if t > max

then max = t;
maxi = i;

maxKnown[M] = max // memoize result
return max

	The Knapsack Problem
	The Knapsack Problem
	The Knapsack Problem
	The Knapsack Problem
	The Knapsack Problem�(recursive solution)
	The Knapsack Problem�(DP solution)

