3.2 Standard notations and common functions 53

3.1-3
Explain why the statement, “The running time of algorithm A is at least O(n?),” is
meaningless.

3.1-4
Is 201 = 0(2M)7 Is 22" = O(2")?

3.1-5
Prove Theorem 3.1.

3.1-6
Prove that the running time of an algorithm is ®(g(n)) if and only if its worst-case
running time is O(g(n)) and its best-case running time is Q(g(n)).

3.1-7
Prove that o(g(n)) N w(g(n)) is the empty set.

3.1-8

We can extend our notation to the case of two parameters n and m that can go to
infinity independently at different rates. For a given function g(n,m), we denote
by O(g(n,m)) the set of functions

O(gln,m)) ={f(n,m): there exist positive constants ¢, nq, and g
such that 0 < f(n,m) < cg(n,m)
foralln = ng or m > mg} .

Give corresponding definitions for Q(g(n,m)) and ©(g(n,m)).

3.2 Standard notations and common functions

This section reviews some standard mathematical functions and notations and ex-
plores the relationships among them. -t also illustrates the use of the asymptotic
notations.

Monotonicity

A function f(n) is monotonically increasing it m < n implies f(m) < f(n).
Similarly, it is monotonically decreasing if m < n implies f(m) > f(n). A
function f(n) is strictly increasing if m < n implies f(m) < f(n) and strictly
decreasing if m < n implies f(m) > f(n).

T el A

S e

e ———— e

=

i

54

Chapter 3 Growth of Functions

Floors and ceilings

For any real number x, we denote the greatest integer less than or equal to x by Lx]
(read “the floor of x”) and the least integer greater than or equal to x by [x] (read
“the ceiling of x”). For all real x,

x—1 < |x] <x <[x] <x+1. (3.3)
For any integer #,
/2] +|n/2] =n,

and for any real number x > 0 and integers a, b > 0,

] g1,
COE
HE

The floor function f(x) = | x| is monotonically increasing, as is the ceiling func-

tion f(x) = [x].

Modular arithmetic

For any integer a and any positive integer n, the value @ mod 7 is the remainder
(or residue) of the quotient a /n:

amodn =a—nla/n] . : (3.8)
It follows that
O0<amodn <n. 3.9

Given a well-defined notion of the remainder of one integer when divided by an-
other, it is convenient to provide special notation to indicate equality of remainders.
If (@ mod n) = (b mod n), we write @ = b (mod n) and say that a is equivalent
to b, modulo n. In other words, a = b (mod 7) if a and b have the same remain-
der when divided by n. Equivalently, a = » (mod n) if and only if » is a divisor
of h —a. We write a # b (mod n) if a is not equivalent to b, modulo 7.

3.2 Standard notations and common functions 55

Polynomials

Given a nonnegative integer d, a polynomial in n of degree d is a function p(n)
of the form

d
pny =Y am’,
=0

where the constants ag,dq,...,dy are the coefficients of the polynomial and
ag # 0. A polynomial is asymptotically positive if and only if az > 0. For an
asymptotically positive polynomial p(n) of degree d, we have p(n) = ©(n?). For
any real constant ¢ > 0, the function 7 is monotonically increasing, and for any
real constant ¢ < 0, the function n¢ is monotonically decreasing. We say that a
function f(n) is polynomially bounded if f(n) = O(n*) for some constant k.

Exponentials

For all real ¢ > 0, m, and n, we have the following identities:

a® = 1,
at = a,
al = 1/a,
(am)n — amn ,
(@' = (@)",
a™a"® = g™t .

For all # and a > 1, the function a" is monotonically increasing in n. When
convenient, we shall assume 0° = 1.

We can relate the rates of growth of polynomials and exponentials by the fol-
lowing fact. For all real constants a and b such thata > 1,

. n

Iim — =0, (3.10)
from which we can conclude that
n® =o(a").

Thus, any exponential function with a base strictly greater than 1 grows faster than
any polynomial function.

Using e to denote 2.71828 ..., the base of the natural logarithm function, we
have for all real x,

2 x3

X
x_ —_— — e —_—
e _1+x—l—2!+3!+ —Z i’ (3.11)

=0

56

Chapter 3 Growth of Functions

where “!” denotes the factorial function defined later in this section. For all real x,
we have the inequality

e >14x, (3.12)
where equality holds only when x = 0. When |x| < 1, we have the approximation
l+x<e*<1+x+x2. (3.13)

When x — 0, the approximation of ¢* by 1 + x is quite good:
e =1+x+0(x?.

(In this equation, the asymptotic notation is used to describe the limiting behavior
as x — O rather than as x — ©00.) We have for all x,

lim (1 n %) — " (3.14)

n—-oo

Logarithms

We shall use the following notations:

lgn = log,n (binary logarithm) ,
Inn = log,n (natural logarithm) ,
Ig°n = (gn)¥ (exponentiation) ,
Ilglgn = lg(lgn) (composition) .

An important notational convention we shall adopt is that logarithm functions will
apply only to the next term in the formula, so that lgn + k will mean (gn) + k
and not Ig(n + k). If we hold b > 1 constant, then for n > 0, the function log, n
is strictly increasing.

Forallreala > 0,5 > 0, ¢ > 0, and n,

a = blogba ,
log.(ab) = log,a+log.b,
log,a” = nlog,a,
log,. a
1 = — 3.15
0gp @ B g (3.15)
log,(1/a) = —log,a,
1
lo = =
L log, b
alogb ¢ _ Clogba , (316)

where, in each equation above, logarithm bases are not 1.

3.2 Standard notations and common functions 57

By equation (3.15), changing the base of a logarithm from one constant to an-
other changes the value of the logarithm by only a constant factor, and so we shall
often use the notation “lg n” when we don’t care about constant factors, such as in
O-notation. Computer scientists find 2 to be the most natural base for logarithms
because so many algorithms and data structures involve splitting a problem into
two parts.

There is a simple series expansion for In(1 + x) when |x| < 1:

x2 x? x* x°

In(1 =X——=+———+ —=——--.

Mt =x—gt3 -7 +3

We also have the following inequalities for x > —1:

14% < In(l+x) < x, 3.17)

where equality holds only for x = 0.

We say that a function f'(n) is polylogarithmically bounded if f(n) = O(1g" n)
for some constant k. We can relate the growth of polynomials and polylogarithms
by substituting 1g n for » and 2¢ for a in equation (3.10), yielding

Igbn o 1gPn

‘ im ——— = lim e

n—00 (2“)1271 n—so0 n¢
|
i From this limit, we can conclude that

Ig”n = o(n%) |

|

¢ for any constant a > 0. Thus, any positive polynomial function grows faster than

any polylogarithmic function.

Factorials

The notation n! (read “n factorial”) is defined for integers n > 0 as

; | ifn=0,
n! =
n-(n—1)"! ifn>0.

Thus,n!=1-2-3.--n.
A weak upper bound on the factorial function is n! < n", since each of the n
terms in the factorial product is at most n. Stirling’s approximation, f

n! = +2nn (g)n (1 +0 (%)) , (3.18) ’l

58

Chapter 3 Growth of Functions

where e is the base of the natural logarithm, gives us a tighter upper bound, and a
lower bound as well. As Exercise 3.2-3 asks you to prove,

n! = o@m"),
nt = w2,
lg(n!)) = O@nlgn), (3.19)

where Stirling’s approximation is helpful in proving equation (3.19). The following

equation also holds for all n > 1:

nl = 27n (ﬁ) Rz (3.20)
e

where

1 1
LY S 321
12n+1 % <1 (3-21)

Functional iteration

We use the notation f® () to denote the function S (n) iteratively applied i times
to an initial value of n. Formally, let f(n) be a function over the reals, For non-
negative integers i, we recursively define

) = n lf l. == O)
ST FUfOm)) ifi >0.
For example, if f(n) = 2n, then SDm) = 2in.

The iterated logarithm function

We use the notation 1g* 1 (read “log star of n”) to denote the iterated logarithm, de-
fined as follows. Let 1g") 1 be as defined above, with f(n) = Ig n. Because the log-
arithm of a nonpositive number is undefined, 1g n is defined only if gV 5 > 0,
Be sure to distinguish 1g" » (the logarithm function applied i times in succession,
starting with argument 1) from lg' 1 (the logarithm of » raised to the ith power).
Then we define the iterated logarithm function as

Ig"n =min{i >0:1g9 5 < 1} .
The iterated logarithm is a very slowly growing function:

Ig*2 = 1,

Ig* 4 2,
Ig"16 = 3,

Ig* 65536 = 4.
1g*(255%) — 5.

—

3.2 Standard notations and common functions 59

Since the number of atoms in the observable universe is estimated to be about 108°,
which is much less than 29%°3¢, we rarely encounter an input size n such that
Ig“n > 5.

Fibonacci numbers

We define the Fibonacci numbers by the following recurrence:

FO e O 5
F =1, (3.22)
Fo = F_ +F_ fori > 2.

Thus, each Fibonacci number is the sum of the two previous ones, yielding the
sequence

0,1,1,2,3,5, 8 13, 21, 34, 55,

Fibonacci numbers are related to the golden ratio ¢ and to its conjugate (Z, which
are the two roots of the equation

x2=x+1 (3.23)
and are given by the following formulas (see Exercise 3.2-6):

1+ V5

¢ = 5 (3.24)
= 1.61803...,

2 |‘

= —.61803.... !
Specifically, we have

:(pi_é;z
ﬁ)

which we can prove by induction (Exercise 3.2-7). Since ‘q@ 1 < 1, we have

F;

i

)

<

5y

<

I
V5
1
5 1

which implies that

60

Chapter 3 Growth of Functions

P = V—i + 1J : (3.25)

which is to say that the 7th Fibonacci number F; is equal to ¢’ /+/5 rounded to the
nearest integer. Thus, Fibonacci numbers grow exponentially.

Exercises

3.2-1

Show that if f(n) and g(n) are monotonically increasing functions, then so are
the functions f(n) + g(n) and f(g(n)), and if f(n) and g(n) are in addition
nonnegative, then f(n) - g(n) is monotonically increasing.

3.2-2
Prove equation (3.16).

3.2-3
Prove equation (3.19). Also prove that n! = @(2") and n! = o(n").

3.24 %
Is the function [lgn1! polynomially bounded? Is the function [lglg n]! polynomi-
ally bounded?

3.2-5 %
Which is asymptotically larger: 1g(lg* n) or 1g*(Ign)?

3.2-6
Show that the golden ratio ¢ and its conjugate q§ both satisfy the equation
x2=x+1

3.2-7

Prove by induction that the ith Fibonacci number satisfies the equality
i i

o 90

1 \/5 ’
where ¢ is the golden ratio and ¢A> is its conjugate.

3.2-8
Show that k Ink = ©(n) implies k = ©(n/ Inn).

|
|
|
|

