A

Summations

When an algorithm contains an iterative control construct such as a while or for
loop, we can express its running time as the sum of the times spent on each exe-
cution of the body of the loop. For example, we found in Section 2.2 that the jth
iteration of insertion sort took time proportional to j in the worst case. By adding
up the time spent on each iteration, we obtained the summation (or series)

n
R
j=2

When we evaluated this summation, we attained a bound of ®(n?) on the worst-
case running time of the algorithm. This example illustrates why you should know
how to manipulate and bound summations.

Section A.1 lists several basic formulas involving summations. Section A.2 of-
fers useful techniques for bounding summations. We present the formulas in Sec-
tion A.1 without proof, though proofs for some of them appear in Section A.2 to
illustrate the methods of that section. You can find most of the other proofs in any
calculus text.

A.1 Summation formulas and properties

Given a sequence di,da, - - . , 4, of numbers, where n is a nonnegative integer, we
can write the finite suma; +a, + --- + a, as

n
E ay .
k=1

If n = 0, the value of the summation is defined to be 0. The value of a finite series
is always well defined, and we can add its terms in any order.

Given an infinite sequence @, d,, . .. of numbers, we can write the infinite sum
a;+a; +---as
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o0
Eak,
k=1

which we interpret to mean

If the limit does not exist. the series diverges; otherwise, it converges. The terms
of a convergent series cannot always be added in any order. We can, however,
rearrange the terms of an absolutely convergent series, that is, a series > e Gk
for which the series > ket lak] also converges.

Linearity

For any real number ¢ and any finite sequences qa,, A2;vs@pand by, by, ... b,

D car +by) = ¢ ap+ D b
k=1 k=1 k=1

The linearity property also applies to infinite convergent series.

We can exploit the linearity property to manipulate summations incorporating
asymptotic notation. For example,

2 O(f(k) =@ (Z f(k)) :
k=1 k=1

In this equation, the ©-notation on the left-hand side applies to the variable k, but
on the right-hand side, it applies to n. We can also apply such manipulations to
infinite convergent series.

Arithmetic series

The summation

i‘k=1+2+---+n,

k=1

18 an arithmetic series and has the value

Yk = %n(n-i—l) (A.1)
k=1

- Q). (A2)




e e———

Al Summation formulas and properties 1147

Sums of squares and cubes

We have the following summations of squares and cubes:

Zkz _ n(n 4+ 1)6(2n +1) ‘ A%
k=0

4 2
Yk = iﬁ%ﬂﬁ_ (A4)
k=0

Geometric series

For real x # 1, the summation

n
Zxk: l+x+x% 4+ x"

k=0
is a geometric or exponential series and has the value
n
xn-i-l —1
doxkh=—, (A.5)
x—=1
k=0

When the summation is infinite and |x| < 1, we have the infinite decreasing geo-
metric series

E = — (A.6)
1—x
k=0

Harmonic series

For positive integers 7, the nth harmonic number is

1 1 1 1
Hy = 14 —F=4—+4-t-—
+3 gttt
3
k=1k
= lnn+ 0(1). (A7)

(We shall prove a related bound in Section A.2.)

Integrating and differentiating series

By integrating or differentiating the formulas above, additional formulas arise. For
example, by differentiating both sides of the infinite geometric series (A.6) and
multiplying by x, we get
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. X
Pt (1 -x)
for |x| < 1.

Telescoping series

For any sequence ay, q,, . . . ,Qy,
n
E (ar — A1) = an —ay , (A.9)
k=1
since each of the terms a;, a,, . . @y, is added in exactly once and subtracted oyt

exactly once. We say that the sum telescopes. Similarly,

n—1
Z(ak ~Qpyq) = Qo —a, .
k=0

As an example of a telescoping sum, consider the series
D
Since we can rewrite each term as

1 1 1

kk+1) "k k11
we get

n—1 1 n—1 1 1 )
= k(k + 1) - (;’c k+1
1

n v

Products

We can write the finite product a,as---a, as

1
o
k=1

Ifn = 0, the value of the product is defined tobe 1. We can convert 4 formula with
a product to a formula with a summation by using the identity

Ig (”u;) = Zlgak .
k=1

k=1
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Exercises

A.l-1
Find a simple formula for Y ;_,(2k — 1).

Al-2 x
Show that ) y_, 1/(2k — 1) = In(y/n) + O(1) by manipulating the harmonic
series.

A.I-3
Show that 3 pr, k2x* = x(1 + x)/(1 — x)* for 0 < |x| < 1.

Al4 *x
Show that Y ;2 o (k — 1)/2% = 0.

A5 *
Evaluate the sum Y o (2k + 1)x%.

A.l-6
Prove that ) i _; O(fi(i)) = O(X %= fx(i)) by using the linearity property of
summations.

A.l-7
Evaluate the product [,_, 2 - 4*.

Al-8 *
Evaluate the product [, _,(1 — 1/k?).

A.2 Bounding summations

We have many techniques at our disposal for bounding the summations that de-
scribe the running times of algorithms. Here are some of the most frequently used
methods.

Mathematical induction

The most basic way to evaluate a series is to use mathematical induction. As an
example, let us prove that the arithmetic series ) ;_, & evaluates to 2n(n + 1). We
can easily verify this assertion for » = 1. We make the inductive assumption that
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it holds for 7, and we prove that it holds for 7 + 1. We have

n+1 n
dk=Yk+@m+
k=1 k=1
= %n(n—l—l)%—(n—i—l)
1
e E(n-l— (n+2).

You don’t always need to guess the exact value of a summation in order to use
mathematical induction. Instead, you can use induction to prove a bound on a sum-
mation. As an example, let us prove that the geometric series Y reo 3Fis O(3").
More specifically, let us prove that 2 k=0 3¥ =< ¢3" for some constant ¢. For the
initial condition n = 0, we have 2,2:0 3=1<c-laslongasc > I. Assuming
that the bound holds for , let us prove that it holds for 77 + 1. We have

n-+1 n
Z 3k . Z 3k + 3n+l
k=0 k=0
< 3" 4 37f! (by the inductive hypothesis)
_ (1 1 n+1
- (3 + E) c3
< C3n+1

as long as (1/3 4-1/¢) < 1 or, equivalently, ¢ > 3/2. Thus, Y} _, 3F = 0(3"),
as we wished to show.

We have to be careful when we use asymptotic notation to prove bounds by in-
duction. Consider the following fallacious proof that 7 _ 1k = O(n). Certainly,

ZIi:l k = O(1). Assuming that the bound holds for 1, we now prove it for n + 1:

n+1 n
Yok o= Yk+@m+1)
k=1 k=1
On)+Mmn+1) & wrong!!
= On+1).

The bug in the argument is that the “constant” hidden by the “big-oh” grows with n
and thus is not constant. We have not shown that the same constant works for all n.

Bounding the terms

We can sometimes obtain a good upper bound on a series by bounding each term
of the series, and it often suffices to use the largest term to bound the others. For
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example, a quick upper bound on the arithmetic series (A.1) is

n n
Dk = Xom
k=1 k=1
2

= n

. n .
In general, for a series ) ;_, ak, if we let @, = maxy<x<a Gk, then

n
E A <N Qmax -
k=1

The technique of bounding each term in a series by the largest term is a weak
method when the series can in fact be bounded by a geometric series. Given the
series Yy _, Ak, suppose that agyi/ay < r forall k = 0, where 0 < r < lisa
constant. We can bound the sum by an infinite decreasing geometric series, since
ar < aopr®, and thus

n o0
> Jar < Y aort
k=0 k=0

o0

= aO

We can apply this method to bound the summation Y ;o (k/ 3%). In order to
start the summation at k = 0, we rewrite it as Y oo ((k + 1)/ 3k+1), The first
term (ao) is 1/3, and the ratio (r) of consecutive terms is

(k + 2)/3k+2

k+2
(k + 1)/3k+1

k+1

IA
WIN W=

for all £k > 0. Thus, we have

2k P k+1
237 = Z3k+l
k=1

k=0
1

[A

1-2/3

—_ ] =
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A common bug in applying this method is to show that the ratio of consecu-
| tive terms is less than 1 and then to assume that the summation is bounded by a
geometric series. An example is the infinite harmonic series, which diverges since

n

1 i LR lim - '
' ol noe Tk .
= lim ©(Ign) '
v n—o00
= 0.

The ratio of the (k + 1)st and kth terms in this series is k/(k+1) < 1, but the series
is not bounded by a decreasing geometric series. To bound a series by a geometric
series, we must show that there is an r < 1, which is a constant, such that the ratio
of all pairs of consecutive terms never exceeds r. In the harmonic series, no such r
exists because the ratio becomes arbitrarily close to 1.

_ Splitting summations

One way to obtain bounds on a difficult summation is to express the series as the
sum of two or more series by pa rtitioning the range of the index and then to bound
each of the resulting series. For example, suppose we try to find a lower bound
on the arithmetic series > k=1 k, which we have already seen has an upper bound
of n%. We might attempt to bound each term in the summation by the smallest term,
but since that term is 1, we get a lower bound of r for the summation— far off from
our upper bound of n2.

We can obtain a better lower bound by first splitting the summation. Assume for
convenience that n is even. We have

n n/2 n
Doko= > k+ >
k=1 k=1 k=n/2+41
n/2 n
= >0+ > /2
. k=1 k=n/2+1
| = (n/2)?
3 = Q@)

which is an asymptotic:ally tight bound, since > w1 k = On2). '

For a summation arising from the analysis of an algorithm, we can often split
the summation and ignore a constant number of the initial terms. Generally, this
technique applies when each term @, in a summation o 9k 1s independent of 7.
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Then for any constant k, > 0, we can write

n ko—1 n
Zak = Z ay + Z fe§%
k=0 k=0 k=ko

n
= O()+ ) a,
k=ko

since the initial terms of the summation are all constant and there are a constant
number of them. We can then use other methods to bound Zszo ak. This tech-
nique applies to infinite summations as well. For example, to find an asymptotic
upper bound on

(X)kz

2 5

k=0

we observe that the ratio of consecutive terms is

(k -+ 1)2/2k+1 B (k + 1)2
k2 )2k  2k2
8
<
-9
if k > 3. Thus, the summation can be split into
o0 kz 2 kz o0 k2
2w = LEtra
k=0 k=0 k=3
2 o0 k
k* 9 8
s Yoret g2 (5)
k=0 =0
= 0(Q),

since the first summation has a constant number of terms and the second summation
is a decreasing geometric series.

The technique of splitting summations can help us determine asymptotic bounds
in much more difficult situations. For example, we can obtain a bound of O(Ign)
on the harmonic series (A.7):

"1
H, =) —.
2%

We do so by splitting the range 1 to  into |Ign] + 1 pieces and upper-bounding
the contribution of each piece by 1. Fori =0, 1,.. ., llgn], the ith piece consists
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of the terms starting at 1/2/ and going up to but not including 1/2/+!, The last
piece might contain terms not in the original harmonic series, and thus we have

llgn]) 263

Il 1
;E = Zzzf+j

N
o

< lgn+1. (A.10)

Approximation by integrals

When a summation has the form ZZ=m S(k), where f (k)is a monotonically in-
creasing function, we can approximate it by integrals:

n+1

| rmar<y < [ reax. (A1)
m-—1 k=m m

Figure A.1 justifies this approximation. The summation is represented as the area
of the rectangles in the figure, and the integral is the shaded region under the curve.
When £(k) is a monotonically decreasing function, we can use a similar method
to provide the bounds

n+t1 n n
[ w3 s < | rwas. (A.12)

k=m
The integral approximation (A.12) gives a tight estimate for the nth harmonic
number. For a lower bound, we obtain

i 1 /n+1 dx
= k 1 X
= In(n+1). (A.13)

For the upper bound, we derive the inequality
%1 / "dx

> P B

k=2 1 x

= Inn,

%
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W

u)/
(1+ud) f
(gru) f

@/
(1-u) S
W/

L 3y
m-1 m m+l  m+2

(2)

_f®

() f [\.
\\
(1+uw) f [\
(T+ru) f
(wf
a-wf
W

— > X
m—1 m m+l  m+2 n—2 n-1 n n+1

(b)

Figure A.1 Approximation of Zﬁ:m f(k) by integrals. The area of each rectangle is shown
within the rectangle, and the total rectangle area represents the value of the summation. The in-
tegral is represented by the shaded area under the curve. By comparing areas in (a), we get
f,ﬁ_l fx)dx < Y }_,, f(k), and then by shifting the rectangles one unit to the right, we get
Sk FOO) = [ /G0 din (b).
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which yields the bound

n

1
Z—Slnn—i—l. (A.14)
o

Exercises

A.2-1
Show that ), 1/k? is bounded above by a constant.

A.2-2
Find an asymptotic upper bound on the summation

lgn]

; [n/2¥] .

A.2-3
Show that the nth harmonic number is Q2(Ig n) by splitting the summation.

A24
Approximate Y ¢ _, k* with an integral.

A.2-5
Why didn’t we use the integral approximation (A.12) directly on Y ;_, 1/k to
obtain an upper bound on the nth harmonic number?

Problems

A-1 Bounding summations

Give asymptotically tight bounds on the following summations. Assume that 7 >0
and s > 0 are constants.
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c. 2": k"ig' k.
k=1

Appendix notes

Knuth [209] provides an excellent reference for the material presented here. You
can find basic properties of series in any good calculus book, such as Apostol [13]

or Thomas et al. [334].

e e




Sets, Etc.

Many chapters of this book touch on the elements of discrete mathematics. This
appendix reviews more completely the notations, definitions, and elementary prop-
erties of sets, relations, functions, graphs, and trees. If you are already well versed
in this material, you can probably just skim this chapter.

B.1 Sets

A set is a collection of distinguishable objects, called its members or elements. If
an object x is a member of a set S » We write x € S (read “x is a member of §”
or, more briefly, “x is in .S ”). If x is not a member of § , we write x ¢ §. We
can describe a set by explicitly listing its members as a list inside braces. For
example, we can define a set S to contain precisely the numbers 1, 2, and 3 by
writing S = {1,2,3}. Since 2 is a member of the set S, we can write 2 S, and
since 4 is not a member, we have 4 ¢ S. A set cannot contain the same object more
than once,' and its elements are not ordered. Two sets 4 and B are equal, written
A = B, if they contain the same elements. For example, {1,2,3, 1} ={1,2,3) =
{3,2,1}.

We adopt special notations for frequently encountered sets:

¥ denotes the empty set, that is, the set containing no members.

Z, denotes the set of integers, that is, the set {..,—2,-1,0,1, 2, .

* R denotes the set of real numbers.

N denotes the set of natural numbers, that is, the set {0,1,2,...}.2

Ia variation of a set, which can contain the same object more than once, is called a multiset.

2Some authors start the natural numbers with I instead of 0. The modern trend scems to be to start
with 0.

—
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If all the elements of a set A are contained in a set B, that is, if x € A implies
x € B, then we writt A C B and say that A is a subset of B. A set Aisa
proper subset of B, written A C B, if A C Bbut A # B. (Some authors use the
symbol “C” to denote the ordinary subset relation, rather than the proper-subset
relation.) For any set 4, we have 4 € A. For two sets A and B, we have A = B
if and only if A € B and B & A. For any three sets 4, B, and C, if A € B
and B C C, then A € C. For any set A, we have 8 © A.

We sometimes define sets in terms of other sets. Given a set A, we can define a
set B C A by stating a property that distinguishes the elements of B. For example,
we can define the set of even integers by {x : x € Z and x/2 is an integer}. The
colon in this notation is read “such that.” (Some authors use a vertical bar in place

of the colon.)
Given two sets A4 and B, we can also define new sets by applying set operations:

«  The intersection of sets A and B is the set
ANB={x:xecAandx € B} .

«  The union of sets A and B is the set
AUB={x:xeAorx € B}.

 The difference between two sets A and B is the set
A-B={x:xecAandx ¢ B} .

Set operations obey the following laws:

Empty set laws:
ANG = 0,
AUug = A.

Idempotency laws:
ANA = A4,
AUuAdA = A.

Commutative laws:

ANB = BNA,
AUB = BUA.




1160

Appendix B Sets, Exc.

U

Figure B.1 A Venn diagram illustrating the first of DeMorgan’s laws (B.2). Each of the sets 4, B,
and C is represented ag acircle.

Associative Iaws:

ANBNC) = Unp)nc,
AUBUC) = uspyuc,

Distributive laws:

ANBUC) = ANByuncy, oy
AUMBNC) = (MUB)N(4aUC). ®-D

Absorption laws:

ANAUB) = 4.
AUMNB) = 4.

DeMorgan’s laws:

A~ (BNC) = (A~B)u(4-c), -
A-(BUC) = (A~Byn-cy. (B2

complement of a set A as A = [ — A={x:xelUand x & A}, For any set
A S U, we have the following laws:

1/1 - A,
AN4d = g
AUd = @
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We can rewrite DeMorgan’s laws (B.2) with set complements. For any two sets
B,C C U, we have

BNC = BUC,
BUC = BnNnC.

Two sets A and B are disjoint if they have no elements in common, that is, if
AN B = 0. A collection 8 = {S;} of nonempty sets forms a partition of a set S if

* the sets are pairwise disjoint, that is, S;, S; € 8 and i # j imply S; 0 S; =10,
and

* their union is S, that is,

S:US,-.

S;e8

In other words, § forms a partition of S if each element of S appears in exactly
one S; € 8.

The number of elements in a set is the cardinality (or size) of the set, denoted |S|.
Two sets have the same cardinality if their elements can be put into a one-to-one
correspondence. The cardinality of the empty set is |@] = 0. If the cardinality of a
set is a natural number, we say the set is finite; otherwise, it is infinite. An infinite
set that can be put into a one-to-one correspondence with the natural numbers N is
countably infinite; otherwise, it is uncountable. For example, the integers Z are
countable, but the reals R are uncountable.

For any two finite sets A and B, we have the identity

|AUB|=|A|+]B|—|ADB| , (B.3)
from which we can conclude that
|AU B| < |A| + |B] .

If A and B are disjoint, then |A N B| = 0 and thus [AU B| = |A| + |B]. If
A C B, then |A| < |B|.

A finite set of n elements is sometimes called an n-set. A 1-set is called a
singleton. A subset of k elements of a set is sometimes called a k-subset.

We denote the set of all subsets of a set S, including the empty set and S itself,
by 25; we call 25 the power set of S. For example, 2abt = (¢ {a},{b},{a,b}}.
The power set of a finite set S has cardinality 2151 (see Exercise B.1-5).

We sometimes care about setlike structures in which the elements are ordered.
An ordered pair of two elements a and b is denoted (a, b) and is defined formally
as the set (a,b) = {a, {a,b}}. Thus, the ordered pair (a, b) is not the same as the
ordered pair (b, a).
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The Cartesian product of two sets A and B, denoted A x B, is the set of af]
ordered pairs such that the first element of the pair is an element of 4 and the
second is an element of B. More formally,

AxB:{(a,b):aeAandbeB}.

For example, {a, b} x{a,b,c} = {(a,a),(a,b),(a,c), (b,a), (b,b), (b, ¢)}. When
A and B are finite sets, the cardinality of their Cartesian product is

|Ax B| =|A|-|B| . (B.4)
The Cartesian product of n sets A 1,42, ..., 4, is the set of n-tuples

Ay XAy x -~ x A4, = {(@1.a2,...,a,) :a;, € A; fori = L2,...,n},

whose cardinality is

[ A1 X Ay X o X Ay| = | Ay - |Aa] -+ | Ay

if all sets are finite. We denote an n-fold Cartesian product over a single set 4 by
the set

A" =AxAx---x A,

whose cardinality is |A"| = |A|" if A is finite. We can also view an n-tuple as a
finite sequence of length 7 (see page 1166).

Exercises

B.1-1
Draw Venn diagrams that illustrate the first of the distributive laws (B.1).

B.1-2
Prove the generalization of DeMorgan’s laws to any finite collection of sets:

ANA4A,N---NA, = A U4,U..-UZA,,

AyUA,U---Ud, = 4, N4,Nn---Nn3Z,.
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B.1-3 *
Prove the generalization of equation (B.3), which is called the principle of inclu-

sion and exclusion:

|Aj U4, U UA,| =
[A1] + |A2] + -+ + [An]
— Ay N Ay —|A; N As| — -+ (all pairs)
+ AN A, N Az +--- (all triples)

+(=D"HA, NA NN A

B.1-4
Show that the set of odd natural numbers is countable.

B.1-5
Show that for any finite set S, the power set 25 has 2! elements (that is, there

are 2!5! distinct subsets of S).

B.1-6
Give an inductive definition for an n-tuple by extending the set-theoretic definition

for an ordered pair.

B.2 Relations

A binary relation R on two sets A and B is a subset of the Cartesian product Ax B.
If (a,b) € R, we sometimes write a R b. When we say that R is a binary relation
on a set A, we mean that R is a subset of 4 x A. For example, the “less than”
relation on the natural numbers is the set {(a,b) : a,b € N and a < b}. An n-ary
relation on sets Ay, Ao, ..., A, is asubset of A; X Ay X -+ X Ap.

A binary relation R C A x A is reflexive if

aRa

for all @ € A. For example, “=" and “<” are reflexive relations on N, but “<” 1s
not. The relation R is symmetric if

a R bimplies b R a

for all a,b € A. For example, “=" is symmetric, but “<” and “<” are not. The
relation R is fransitive if

aRbandb Rcimplya R c
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foralla,b,c € A. For example, the relations “<,”“<” and “=" are transitive, byt
the relation R = {(a,b):a,beNandag = p — 1} is not, since 3 R 4 and 4 R5
do not imply 3 R 5.

A relation that is reflexive, Symmetric, and transitive is an equivalence relation,
For example, “=" is an equivalence relation on the natural numbers, but “<” is not.
If R is an equivalence relation on a set 4, then for ¢ € A, the equivalence clasg
of a is the set [a] = {b € A :a R b}, that is, the set of all elements equivalent to a.
For example, if we define R — {@b):abeNanda +bisan even number},
then R is an equivalence relation, since @ + q is even (reflexive), @ + b is even
implies b + a is even (symmetric), and @ + b is even and b + ¢ is even imply
@ + ¢ is even (transitive). The equivalence class of 4 is [4] = {0,2,4,6,.. .4, and
the equivalence class of 3 js 3] = {1,3,5,7,.. .$. A basic theorem of equivalence
classes is the following,

Theorem B.1 (An equivalence relation is the same as q partition)

The equivalence classes of any equivalence relation R on a set 4 form a partition
of A, and any partition of 4 determines an equivalence relation on A for which the
sets in the partition are the equivalence classes.

Proof For the first part of the proof, we must show that the equivalence classes
of R are nonempty, pairwise-disjoint sets whose union is A. Because R is reflex-
ive, @ € [a], and so the equivalence classes are nonempty; moreover, since every
elementa € A belongs to the equivalence class [a], the union of the equivalence
classes is A. It remains to show that the equivalence classes are pairwise disjoint,
that is, if two equivalence classes [a] and [b] have an element ¢ in common, then
they are in fact the same set. Suppose that @ R ¢ and b R ¢. By symmetry, ¢ R b,
and by transitivity, ¢ R b, Thus, for any arbitrary element x ¢ [a], we have x R «
and, by transitivity, x R b, and thus [a] < [b]. Similarly, [] < [a], and thus
[a] = [5].

For the second part of the proof, let 4 = {4;} be a partition of A4, and define
R = {(a,b) : there exists ; suchthata € A; and b e A;j. We claim that R is an
equivalence relation on A. Reflexivity holds, since ¢ e A; impliesa R a. Symme-
try holds, because if @ R b, then a and b are in the same set A;, and hence b R a.
Ifa Rband b R ¢, then al] three elements are in the same set A;, and thus g R ¢
and transitivity holds. To see that the sets in the partition are the equivalence
classes of R, observe that if ¢ e Aj, then x € [q] implies x € A;, and x € A,
implies x € [a]. =

A binary relation R on a set 4 is antisymmetric if

aRbandbRaimplya =p .




B.2 Relations 1165

For example, the “<” relation on the natural numbers is antisymmetric, since a < b
and b < g imply a = b. A relation that is reflexive, antisymmetric, and transitive
is a partial order, and we call a set on which a partial order is defined a partially
ordered set. For example, the relation “is a descendant of” is a partial order on the
set of all people (if we view individuals as being their own descendants).

In a partially ordered set A, there may be no single “maximum” element a such
that b R a for all b € A. Instead, the set may contain several maximal elements a
such that for no b € A, where b # a, is it the case that a R b. For example, a
collection of different-sized boxes may contain several maximal boxes that don’t
fit inside any other box, yet it has no single “maximum” box into which any other
box will fit.?

A relation R on a set A is a fotal relation if for all a,b € A, we have a R b
or b R a (or both), that is, if every pairing of elements of A is related by R. A
partial order that is also a total relation is a total order or linear order. For example,
the relation “<” is a total order on the natural numbers, but the “is a descendant
of” relation is not a total order on the set of all people, since there are individuals
neither of whom is descended from the other. A total relation that is transitive, but
not necessarily reflexive and antisymmetric, is a total preorder.

Exercises

B.2-1
Prove that the subset relation “C” on all subsets of Z is a partial order but not a
total order.

B.2-2

Show that for any positive integer 7, the relation “equivalent modulo #” is an equiv-
alence relation on the integers. (We say that a = b (mod n) if there exists an
integer ¢ such that a — b = gn.) Into what equivalence classes does this relation
partition the integers?

B.2-3
Give examples of relations that are

a. reflexive and symmetric but not transitive,
b. reflexive and transitive but not symmetric,

¢. symmetric and transitive but not reflexive.

3To be precise, in order for the “fit inside” relation to be a partial order, we need to view a box as
fitting inside itself.




