Homework Set 2
Suggested Solution
CSCl 204.01

Prof Meng
Assigned: Monday, 03/02/2020
Due: Monday, 03/16/2020

For the given graph of cities represented as Python dictionary, following the algorithm of Depth
First Search (stack solution), complete the following tasks.

graph = {‘A’: set(['B’, ‘C']),
\BI : set([\AI’ \DI’ \EI, \FI]),
\cl: set([\AI’ \FII]),
‘D’ : set(['B’']),
‘E’: set(['B’, ‘F'])
\Fl : Set([\Bl , \Cl , \EI])
‘G’ : set([])}
Draw the diagram represented by the above Python dictionary;
b. Demonstrate the algorithm how to find if there is a path between the city of ‘A’ and ‘F’ by
drawing the changes of the stack;
c¢. Demonstrate the algorithm how to find if there is a path between the city of ‘C’ and ‘E’;
d. Demonstrate the algorithm how to find if there is a path between the city of ‘A’ and ‘G’.

o

a. The graph should look like the following. The shape and the location of the nodes may vary,
but the links among the nodes should be the same.

b. S=stack(), assume the right side of the list is the top of the stack
S=[A]
S.pop(), S.push(B), S.push(C)
S=[B,C]
S.pop(), S.push(F)
S=[B, F]
S.pop()
‘F’is the target! So there is a path from Ato F
c. S=stack(), assume the right side of the list is the top of the stack
S=[C]
S.pop(), S.push(A), S.push(F)

S=1[A,F]
S.pop(), S.push(B), S.push(E)
S=[A, B, E]
S.pop()
‘E’ is the target! So there is a path from Cto E
d. S=stack(), assume the right side of the list is the top of the stack
S=[A]
S.pop(), S.push(B), S.push(C)
S=[B,C]
S.pop(), S.push(F)
S=[B, F]
S.pop(), S.push(E)
S=1B, E]
S.pop(), nothing can be pushed as all E’s linked nodes have been visited
S=[B]
S.pop(), S.push(D)
S=[D]
S.pop(), nothing can be pushed as D’s linked node B has been visited
S=1]
Algorithm stops. ‘A’ can’t reach ‘G’
2. Do the same using the Breadth First Search (queue solution) using the same data.
a. S=queue(), assume the right side of the list is the end (tail) of the queue
S=[A]
S.deq(), S.enq(B), S.enq(C)
S=[B,C]
S.deq(), S.enq(D), S.enq(E), S.enq(F)
S=[CD,E,F]
S.deq(), nothing to enq as C’s connections A and F have been visited
S=[D,E F]
S.deq(), nothing to enq as D’s connection B has been visited
S=[E F]
S.deq(), nothing to enq as E’s connections B and F have been visited
S=[F]
S.deq(), nothing to enq as F’s connections B, C, and E all have been visited
‘F’is the target! So there is a path from ‘A’ to ‘F’

b. S=queue(), assume the right side of the list is the end (tail) of the queue
S=[C]
S.deq(), S.enq(A), S.enq(F)
S=[A F]
S.deq(), S.enq(B)
S=[F, B]
S.deq(), S.enq(E)
S=[B,E]

S.deq(), S.enq(D)
S=[E, D]
S.deq()
‘E’ is the target! So there is a path from Cto E
3. S=queue(), assume the right side of the list is the end (tail) of the queue

S=1[A]
S.deq(), S.enq(B), S.enq(C)
S=1[B,C]

S.deq(), S.enq(D), S.enq(E), S.enq(F)

S=[C,D,E,F]

S.deq(), nothing to enq as C’s connections A and F have been visited
S=[D,E, F]

S.deq(), nothing can be enged as D’s connection B has been visited
S=1[E, F]

S.deq(), nothing to enq as E’s connections B and F have been visited
S =[F]

S.deq(), nothing can be enged as F’s linked node B has been visited
S=1]

Algorithm stops. ‘A’ can’t reach ‘G’

4. Write a function using stack ADT called is_palindrome(s) that takes a string as the parameter
and returns True if the string represents a palindrome, False otherwise. You can assume all
functions in a standard stack ADT are defined for you.
def is_palindrome(s):

stack = stack()
forcins:
stack.push(c)
forcins:
if c I=stack.pop()
return False
return True

5. Given a circular queue of capacity of 6 using an array, assuming all other functions are defined,
a. Define the two functions is_full() and is_empty(). You can choose how these two functions
are defined.
b. Show how the content of the queue evolves when inserting the integers 2, 3, 4, 5, 6 into the
gueue. When is the queue full? Why?

a. Assume that the initial condition of the queue is front == back == 0 when the queue is
empty,
defis_empty(self):
return self.front == self.back

def is_full(self):

6.

b.

return ((self.back + 1) % n == self.front) #n ==6in our case
Empty queue [_], front == 0, back == 0, an underscore ' means an empty spot.
eng(2), enq(3), enq(4), enq(5), enq(6) result in the following
[,2,3,4,5, 6] and front == 0, back == 5. At this point, the queue is full because (back + 1) %
6 == front (Note that eng() would have to increment the value of ‘back’ by one first before
putting the item into the queue.

For each of the following situations, which of these ADTs (1 through 4) would be most
appropriate to represent the data: (1) a queue; (2) a stack; (3) a list; (4) none? Briefly explain
your answer(s).

a.

The customers at a deli counter who take numbers to mark their turn

Queue, this is a first-come-first-serve queue.

An alphabetic list of names

List, depending on what the applications with this list of names. The data structure could be
changed into others.

Integers that need to be sorted

List: as we may need to alter the locations of these integers.

A grocery list ordered by the occurrences of the items in the store

Queue, as an order is maintained, it is best to use a queue.

A list of tasks to be completed in chronological order

Queue, as an order is maintained, it is best to use a queue.

Airplanes that are approaching an airport, waiting to land

Queue, they have to land in the order of arrival

People who are put on hold when they call a travel agency to make hotel reservations
Queue, they will be serviced according to the order of arrival

A collection of papers submitted by students that needs to be graded, facing up (i.e., the
cover page is facing up)

Stack: if the professor so chooses, grading the papers from the top of the pile down.

