
Homework Set 1

CSCI 204.01

Prof Meng

Suggested Solution

Assigned: Monday, 02/10/2020

Due: Monday, 02/17/2020

Please complete the following homework. While discussions are encouraged, everyone must complete

their work themselves. Submit your work to Moodle with one single file, either in PDF, or in Word by

the deadline.

1. Given two Python lists, one is a collection of city names city_name[], the other is a collection of

the population in these cities city_pop[]. Create a dictionary d that uses the city name as its key

and the population as its value.

d = {}

for i in range(len(city_name)):

d[city_name[i]] = city_pop[i]

2. Given the following partial class definitions for College and for Major of various majors in a

college, write a class function to compute the total number of students in the college.

class Major:

 def __init__(self, major_name, major_count):

 self.name = major_name # name of the major, e.g., ‘CS’

 self.count = major_count # number of students in the major

…

class College:

 def __init__(self, majors):

 self.majors = [] # self.majors is a list

 for m in range(len(majors):

 self.majors.append(majors[m])# each is a major object

def compute_total(self):

 count = 0

 for x in self.majors:

 count += x.count

 return count

3. Given the following Python code segments, identify the complexity using the big-Oh notation.

Explain briefly your answers.

a. # search for a name in a list

i = 0

while (i < len(name_list) and name_list[i] != name):

 i += 1

This is O(n) where n is the length of the list. In the worst case,

we’d go through the entire list to determine the result.

b. # selection sort, my_nums is a list of integers

for k in range(len(my_nums)):

 min = my_nums[k]

 min_index = k

 for m in range(k+1, len(my_nums)):

 if my_nums[m] < min:

 min = my_nums[m]

 min_index = m

swap(my_nums, k, min_index) # swap my_nums[k] and

my_nums[min_index]

This is (n^2) where n is the length of the list. We’d go through

a nested loop, where n is the length of the list.

c. # some recursion, try out some small numbers first

def fun(n):

 if n <= 0:

 return n

 else:

 return fun(n-2) + 2*fun(n-1)

T(n) = T(n-2) + 2*T(n-1) = [T(n-4) + 2*T(n-3)] + 2*[T(n-3) +

2*T(n-2)] = … = T(n-2k) + 2^k*T(n-(2k-1)) + 2^k*T(n-k) + …

The sequence will come to a stop when k = n/2 with a series of

sum in the form of 2^k, equivalent to k*2^k, so this is

exponential term O(2^n)

4. We studied various recursive programs. One of the well-known example is the Tower of Hanoi.

A sample code for Tower of Hanoi is as follows.

def tower_of_hanoi(n, src, dest, helper):

 if n == 1:

 print('moving ', n, ' from ', src, ' to ', dest)

 else:

 tower_of_hanoi(n-1, src, helper, dest)

 tower_of_hanoi(1, src, dest, helper)

 tower_of_hanoi(n-1, helper, dest, src)

Try out the program with n = 3, 6, and 10. That is

tower_of_hanoi(3, 0, 1, 2)

tower_of_hanoi(6, 0, 1, 2)

tower_of_hanoi(10, 0, 1, 2)

and count how many lines of output each of the execution generates. Using this to estimate the

complexity of the program, i.e., O(f(n)), what is f(n) in this case?

The easiest way of estimate the lines of output is to run at the Linux command line

% python tower_of_hanoi(3, 0, 1, 2) | wc

% python tower_of_hanoi(3, 0, 1, 2) | wc

% python tower_of_hanoi(3, 0, 1, 2) | wc

Here wc is a Linux command that counts the number of lines. You can also do it within spyder or

idle. You can copy and paste the output to a text file and then find out how many lines of output.

When n = 3, we have 8 lines of output, n = 6, we have 64, n = 10, we have 1024, so this is O(2^n)

5. Write a function to compute the sum from 1 to n using recursion.

def sum(n):

 if n == 0:

 return 0

 else:

 return n + sum(n-1)

6. Write a recursive function to return a list consisting of multiples of 4 for a given parameter n. For

example, multiple_of_four(3) returns [4, 8, 12], multiple_of_four(5) returns [4, 8, 12, 16, 20].

def multiple_of_four(n):

if n == 1:

 return [4]

else:

 return multiple_of_four(n-1) + [n*4]

7. Given the following recursive function, show what is printed and explain briefly why.

def fun_six (counter):

 if counter ==0:

 return

 else :

 print ('Before '+str(counter))

 fun_six (counter - 1)

 print ('After '+str(counter))

If we call the function fun_six() with a parameter n, e.g., 3, we’d see

the ‘Before’ message printed in reverse order, e.g., 3,2,1 while the

‘After’ message printed in ascending order, e.g., 1,2,3 because the

order of the recursive calls are made. Here is a sample run

Before 3

Before 2

Before 1

After 1

After 2

After 3

8. Given a singly linked list definition, UserList and ListNode, as discussed in the lectures, write an

overloading function __add__() for the UserList that allows the use of list = list +
node

def __add__(self, node):

 return self.insert(node) # assume the insert() is there

9. For the same singly linked list definition in Problem 8, write an overloading function __len__()

that returns the length of the list.
def __len__(self):

c = 0

node = self.head

while node != None:

 c += 1

 node = node.next

return c

10. Write a function to delete a node from a doubly linked list. (The topic of doubly linked list will be

discussed on Wednesday 2/12.)

def delete(self, node):

place = self.find(node) # find the node in the list

if node != None: # in the list

if node == self.head: # delete the first one

 self.head = node.next

 self.head.prev = None

elif node == self.tail: # delete the last one

 self.tail = node.prev

 self.tail.net = None

else: # the node to delete is somewhere in the middle

 node.next.prev = node.prev

 node.prev.next = node.next

 node = None

