
4/23/2020

1

CSCI 204: Data Structures &
Algorithms

Revised by Xiannong Meng based on
textbook author’s notes

1

Hash Maps
Implementation and Applications

Revised based on textbook author’s notes.

3

Table Size

⚫ How big should a hash table be?

⚫ If we know the max number of keys.
− create it big enough to hold all of the keys.

⚫ In most instances, we don't know the number
of keys.

⚫ Most probing techniques work best when the
table size is a prime number.

4

Rehashing

⚫ We can start with a small table and expand it
as needed.

⚫ Similar to the approach used with the array.

⚫ load factor – the ratio between the number of
keys and the size of the table.

⚫ A hash table should be expanded before the
load factor reaches 80%.

5

Rehashing Example
⚫ After creating a larger array for the table, we can

not simply copy the original keys to the new table.

⚫ We must rebuild or rehash the entire table.
h(765) => 0 h(579) => 1

h(431) => 6 h(226) => 5

h(96) => 11 h(903) => 2

h(142) => 6 => 7 h(388) => 14

6

Expansion Size

⚫ Size of the expansion depends on the application.

⚫ Good rule of thumb is to at least double its size.

⚫ Two common approaches:

⚫ double the size of the table, then search for the
first larger prime number.

⚫ double the size of the table and add one to
ensure M is odd.

4/23/2020

2

7

Efficiency Analysis

⚫ Depends on:

⚫ the hash function

⚫ size of the table

⚫ type of collision resolution probe

⚫ Once an empty slot is located, adding or deleting
a key can be done in O(1) time.

⚫ The time required to perform the search is the
main contributor to the overall time of all ops.

8

Efficiency Analysis

⚫ Best case: O(1)

⚫ The key maps directly to the correct entry.

⚫ There are no collisions.

⚫ Worst case: O(m)

⚫ Assume there are n keys stored in a table of
size m.

⚫ The probe has to visit every entry in the table.

9

Efficiency Analysis

⚫ While hashing appears to be no better than a basic linear
search or binary search in worst case, hashing is very efficient
in the average case with load factor < 0.8. (Table shows the
data for M == 13.)

⚫ Remember linear search O(n), binary search O(log n) and log
13 is about 3.7, hashing is O(1).

Load Factor 0.25 0.5 0.67 0.8 0.99

Successful search:

Linear probe 1.17 1.50 2.02 3.00 50.50

Quadratic probe 1.66 2.00 2.39 2.90 6.71

Unsuccessful search:

Linear probe 1.39 2.50 5.09 13.00 5000.50

Quadratic probe 1.33 2.00 3.03 5.00 100.00
10

Hash Functions

⚫ The efficiency of hashing depends in large
part on the selection of a good hash
function.

⚫ A “perfect” function will map every key to
a different table entry.
− This is seldom achieved except in special cases.

⚫ A “good” hash function distributes the keys
evenly across the range of table entries.

11

Function Guidelines

⚫ Important guidelines to consider in designing
a hash function.

⚫ Computation should be simple.

⚫ Resulting index can not be random.

⚫ Every part of a multi-part key should
contribute.

⚫ Table size should be a prime number.

12

Common Hash Functions

⚫ Division – simplest for integer values.

⚫ Truncation – some columns in the key are
ignored.

⚫ Example: assume keys composed of 7 digits.

⚫ Use the 1st, 3rd, 6th digits to form an index (M =
1000).

h(key) = key % M

4/23/2020

3

13

Common Hash Functions

⚫ Folding – key is split into multiple parts
then combined into a single value.

⚫ Given the key value 4873152, split it
into three smaller values (48, 73, 152).

⚫ Add the values together and use with
division.

14

Hashing Strings

⚫ Strings can also be stored in a hash table.

⚫ Convert to an integer value that can be used
with the division or truncation methods.

⚫ Simplest approach: sum the ASCII values of
individual characters.

⚫ Short strings will not hash to larger table
entries.

⚫ Better approach: use a polynomial.

𝑆0𝑎
𝑛−1 + 𝑆1𝑎

𝑛−2 +⋯+ 𝑆𝑛−3𝑎
2 + 𝑆𝑛−2𝑎 + 𝑆𝑛−1

15

The HashMap ADT

⚫ Hash tables are commonly used to
implement a map or dictionary.

⚫ Same as the Map ADT.

⚫ Keys must be hashable.

⚫ Python's dictionary is implemented using a
hash table.

16

HashMap Implementation

⚫ Hash table:

⚫ Initial size: M = 7

⚫ Must expand as needed.

⚫ Load factor: 2/3

⚫ Expansion size: 2M + 1

⚫ Entries: class _MapEntry :

def __init__(self, key, value):

self.key = key

self.value = value

17

HashMap Implementation

⚫ Use double hashing:
⚫ Hash function:

⚫ Probe function:

⚫ hash() is Python's built-in hash() function.
⚫ Takes a built-in type as the key and returns an int

value that can be used with division method.

h(key) = |hash(key)| % M

hp(key) = 1 + |hash(key)| % (M - 2)

18

Application: Histograms

⚫ Graphical chart of tabulated frequencies.

⚫ Very common in statistics.

⚫ Used to show the distribution of data

4/23/2020

4

19

The Histogram ADT

⚫ A histogram is a container that can be used to
collect and store discrete frequency counts
across multiple categories.

⚫ The category objects must be comparable.

⚫ Histogram(catSeq)

⚫ getCount(category)

⚫ incCount(category)

⚫ totalCount()

⚫ iterator()

20

Building a Histogram

⚫ We can use the ADT to show a grade distribution.

⚫ Input: text file containing int grades

⚫ Output

77 89 53 95 68 86 91 89 60 70 80 77 73 73 93 85 83

67 75 71 94 64 79 97 59 69 61 80 73 70 82 86 70 45 100

Grade Distribution

|

A +******

|

B +*********

|

C +***********

|

D +******

|

F +***

|

+----+----+----+----+----+----+----+----

0 5 10 15 20 25 30 35

21

Histogram: Example

from maphist import Histogram

def main():

Create a Histogram instance for computing the frequencies.

gradeHist = Histogram("ABCDF")

Open the text file containing the grades.

gradeFile = open('cs204grades.txt', "r")

Extract the grades and increment the appropriate counter.

for line in gradeFile :

grade = int(line)

gradeHist.incCount(letterGrade(grade))

Print the histogram chart.

printChart(gradeHist)

buildhist.py

22

Histogram: Example

Determines the letter grade for the given numeric value.

def letterGrade(grade):

if grade >= 90 :

return 'A'

elif grade >= 80 :

return 'B'

elif grade >= 70 :

return 'C'

elif grade >= 60 :

return 'D'

else :

return 'F'

buildhist.py

23

Histogram: Example

def printChart(gradeHist):

print(" Grade Distribution")

Print the body of the chart.

letterGrades = ('A', 'B', 'C', 'D', 'F')

for letter in letterGrades :

print(" |")

print(letter + " +", end = "")

freq = gradeHist.getCount(letter)

print('*' * freq)

Print the x-axis.

print(" |")

print(" +----+----+----+----+----+----+----+----")

print(" 0 5 10 15 20 25 30 35")

Calls the main routine.

main()

buildhist.py

