
4/21/2020

1

CSCI 204: Data Structures &
Algorithms

Revised by Xiannong Meng based on
textbook author’s notes

1

Hash Maps
Introduction

Revised based on textbook author’s notes.

3

Introduction

⚫ When discussing search we saw:

⚫ linear search – O(n)

⚫ binary search – O(log n)

⚫ Can we improve the search operation to
achieve better than O(log n) time?

4

Comparison-Based Searches

⚫ To locate an item, the target search key has to
be compared against the other keys in the
collection.

⚫ O(log n) is the best that can be achieved in
comparison-based search.

⚫ We must use a different technique if we
want to improve the search time.

5

Hashing

⚫ The process of mapping a search key to a
limited range of array indices.

⚫ The goal is to provide direct access to the
keys.

⚫ hash table – the array containing the keys.

⚫ hash function – maps a key to an array index.

6

Hashing Example

⚫ Suppose we have a list of popular fruits, we want
to find if a particular type of fruit is in our
inventory.

⚫ Apple, Banana, Grape, Orange, Pear, Pineapple,
Strawberry.

⚫ We could use an array of 26 elements, each is
index by the first letter of the fruit name,
assuming no repetition. We can simply check for
fruit[name[0]]!

4/21/2020

2

7

Hashing Example

⚫ Suppose we have the following set of keys

a hash table, T, with M = 13 elements.

⚫ We can define a simple hash function h()

⚫ h(765) -> 11, h(431) -> 2, …

765, 431, 96, 142, 579, 226, 903, 388

h(key) = key % M

8

Adding Keys
⚫ To add a key to the hash table:

⚫ Apply the hash function to determine the array
index in which the key should be stored.
h(765) => 11

h(431) => 2

h(96) => 5

h(142) => 12

h(579) => 7

⚫ Store the key in the given slot.

9

Collisions

⚫ What happens when we attempt to add key
226?

h(226) => 5

⚫ collision – when two or more keys map to
the same hash location.

Resolving collisions

• There are in general two approaches to resolve
collisions,

– Closed hashing: find an open spot within the hash
table to store the new element

– Open hashing: create a structure, e.g., a list, or a
tree, in the hashed spot to store the elements that
have the same hashing key

• We first concentrate on closed hashing.

11

Closed hashing: probing

⚫ If two keys map to the same table entry, we
must resolve the collision to find another
available slot.

⚫ linear probe – simplest approach which
examines the table entries in sequential order.

12

Probing

⚫ Consider adding key 903 to our hash table.
h(903) => 6

4/21/2020

3

13

Probing
⚫ If the end of the array is reached during the

probe, it wraps around to the first entry and
continues.

⚫ Consider adding key 388 to our hash table.
h(388) => 11

14

Searching
⚫ Searching a hash table for a specific key is very

similar to the add operation.
⚫ Target key is mapped to an initial slot.

⚫ See if the slot contains the target.

⚫ Otherwise, apply the same probe used to add
keys to locate the target.

⚫ Example: search for key 903.

15

Searching

⚫ What if the key is not in the hash table?

⚫ The probe continues until either:

⚫ a null reference is reached, or

⚫ all slots have been examined.

16

Deleting Keys

⚫ Deleting a key from a hash table is a bit
more complicated than adding keys.

⚫ We can search for the key to be deleted.

⚫ But we cannot simply remove it by setting
the entry to None.

17

Incorrect Deletion

⚫ Suppose we simply remove key 226 from slot
6.

⚫ What happens if we search for key 903?

18

Correct Deletion

⚫ We use a special flag to indicate the entry is
now empty, but was previously occupied.

⚫ When searching a hash table, the probe must
continue past the slot(s) with the special flag.

4/21/2020

4

19

Clustering

⚫ The grouping of keys in a common area.
⚫ As more keys are added to the hash table,

more collisions are likely to occur.
⚫ Clusters begin to form due to the probing

required to find an empty slot.
⚫ As a cluster grows larger, more collisions

will occur.
⚫ primary clustering – clustering around the

original hash position.

20

Probe Sequence

⚫ The order in which the hash entries are visited
during a probe.
⚫ The linear probe steps through the entries in

sequential order.
⚫ The next array slot can be represented as

⚫ where
− i is the ith probe.
− home is the home position of the original key

slot = (home + i) % M

21

Modified Linear Probe

⚫ We can improve the linear probe by changing
the step size to some fixed constant.

⚫ Suppose we set c = 3 to build the hash table.

h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 8

h(96) => 5 h(903) => 6

h(142) => 12 h(388) => 11 => 1

slot = (home + i * c) % M

22

Quadratic Probing
⚫ A better approach for reducing primary clustering.

⚫ Increases the distance between each probe in the
sequence.

⚫ Example:
h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 6

h(96) => 5 h(903) => 6 => 7 => 10

h(142) => 12 h(388) => 11 => 12 => 2 => 7 => 1

slot = (home + i**2) % M

Computations from last slide

• Quadratic probing
h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 6

h(96) => 5 h(903) => 6 => 7 => 10

h(142) => 12 h(388) => 11 => 12 => 2 => 7 => 1

h(226) => 5, second (5 + 12) % M => 6

h(903) => 6, second (6 + 12) % M => 7, third (6 + 22) % M => 10

h(388) => 11, second (11 + 12) % M => 12,

third (11 + 22) % M => 2, fourth(11 + 32) % M => 7,

fifth (11 + 42) % M => 1

24

Quadratic Probing
⚫ Reduces the number of collisions.

⚫ Introduces the problem of secondary clustering.

⚫ When two keys map to the same entry and have
the same probe sequence.

⚫ Example: add key 648

⚫ hashes to entry 11

⚫ follows the same sequence as key 388

4/21/2020

5

25

Double Hashing

⚫ When a collision occurs, a second hash function
is used to build a probe sequence.

⚫ Step size remains a constant throughout the
probe.

⚫ Multiple keys that have the same home
position, will have different probe sequences.

slot = (home + i * hp(key)) % M

26

Double Hashing

⚫ A simple choice for the second hash
function.

⚫ Example: let P = 8

hp(key) = 1 + key % P

h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 8

h(96) => 5 h(903) => 6

h(142) => 12 h(388) => 11 => 3

Computations from last slide

• Double hashing
– slot = (home + i * hp(key)) % M, e.g., M==13

– hp(key) = 1 + key % P, e.g., P == 8

h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 8

h(96) => 5 h(903) => 6

h(142) => 12 h(388) => 11 => 3

h(226) => 5, double hashing [(5+1*(1+226))%P] % M => 8

h(388) => 11, double hashing [(11+1*(1+388)%P] % M => 3

