
4/19/2020

1

CSCI 204: Data Structures &
Algorithms

Revised by Xiannong Meng based on
textbook author’s notes

1

Mergesort

Revised based on textbook author’s notes.

3

Review

⚫ sorting – the process of arranging a collection
of items such that each item and its successor
satisfy a prescribed relationship.

⚫ sort key – values on which items are
ordered.

⚫ items arranged in ascending or descending
order.

Sorting Algorithms

⚫ Can be divided into two categories:

⚫ comparison sorts

− items are arranged by performing pairwise
logical comparisons between two sort keys.

⚫ distribution sorts

− distributes the sort keys into intermediate
groups based on individual key values.

5

Merge Sort

⚫ Uses a divide and conquer strategy to sort
the keys stored in a sequence.

⚫ Keys are recursively divided into smaller
and smaller subsequences until 1 element.

⚫ These individual elements are in order by
themselves

⚫ Subsequences are merged back together.

6

Merge Sort – Divide

⚫ Starts by splitting the original sequence in
the middle to create two subsequences of
approximately equal size.

4/19/2020

2

7

Merge Sort – Divide

⚫ The two subsequences are then split in the
middle.

8

Merge Sort – Divide

⚫ The subdivision continues until there is a single
item in the sequence.

9

Merge Sort – Conquer

⚫ After the sequences are split, they are merge
back together, two at a time to create sorted
sequences.

⚫ A simple implementation for sorting a Python list.

10

Merge Sort Code #1

def pythonMergeSort(theList):

Check the base case.

if len(theList) <= 1 :

return theList

else :

Compute the midpoint.

mid = len(theList) // 2

Split the list and perform the recursive step.

leftHalf = pythonMergeSort(theList[:mid])

rightHalf = pythonMergeSort(theList[mid:])

#Merge the two ordered sublists.

newList = mergeOrderedLists(leftHalf, rightHalf)

return newList

11

Merge Sort – Improved Version

⚫ The previous version:

⚫ only works with Python lists.

⚫ the splitting creates new physical lists.

⚫ uses the slice operation which is time
consuming.

12

Merge Sort – Improved Version

⚫ We can improve the implementation:

⚫ using virtual subsequences.

⚫ that works with any sequence.

4/19/2020

3

13

Merge Sort Code #2

def recMergeSort(theSeq, first, last, tmpArray):

Check the base case.

if first == last :

return

else :

Compute the mid point.

mid = (first + last) // 2

Split the sequence and perform the recursive step.

recMergeSort(theSeq, first, mid, tmpArray)

recMergeSort(theSeq, mid+1, last, tmpArray)

Merge the two ordered subsequences.

mergeSeq(theSeq, first, mid+1, last, tmpArray)

⚫ An improved version of the merge sort.

14

Merging Sorted Sequences
def mergeSeq(theSeq, left, right, end, tmpArray):

a = left

b = right

m = 0

while a < right and b <= end :

if theSeq[a] < theSeq[b] :

tmpArray[m] = theSeq[a]

a += 1

else :

tmpArray[m] = theSeq[b]

b += 1

m += 1

:

:

15

Merging Sorted Sequences
:

:

while a < right : # in parallel with first while

tmpArray[m] = theSeq[a]

a += 1

m += 1

while b <= end : # in parallel with the two whiles

tmpArray[m] = theSeq[b]

b += 1

m += 1

for i in range(end – left + 1) :

theSeq[i+left] = tmpArray[i]

16

Merge Sort – Temporary Array

⚫ A temporary array is used to merge two virtual
subsequences.

17

Wrapper Functions

⚫ A function that provides a simpler and cleaner
interface for another function.

⚫ Provides little or no additional functionality.

⚫ Commonly used with recursive functions that
require additional arguments.

def mergeSort(theSeq):

n = len(theSeq)

tmpArray = Array(n)

recMergeSort(theSeq, 0, n-1, tmpArray)

18

Merge Sort – Efficiency

⚫ We need to determine the number of
invocations and the time required by each
function.

4/19/2020

4

19

Merge Sort – Efficiency

⚫ Consider a sequence of n items.

So the total time needed for merge sort is O(n log n).

