
4/16/2020

1

CSCI 204: Data Structures &
Algorithms

Revised by Xiannong Meng based on
textbook author’s notes

1

Quicksort
Revised based on textbook author’s notes.

3

Quick Sort

⚫ Uses a divide and conquer strategy to sort the keys
stored in a sequence.
⚫ Pick a pivot in the sequence
⚫ Partition the sequence by dividing it into two

segments based on a pivot key.
⚫ Uses subsequences without the need for

temporary storage.

⚫ Quick sort is a recursive algorithm.

4

Quick Sort – Description

⚫ Select the first key as the pivot, p

⚫ Partition the sequence into segments L and G.

⚫ L contains all keys less than p

⚫ G contains all keys greater than or equal to p.

⚫ Recursively apply the same operation on L & G.

⚫ Continues until the sequence contains 0 or 1 key.

⚫ Merge the pivot and two segments back together.

5

Quick Sort – Divide
Pick the first item,
10 as the pivot

Split the array into
2, based on pivot

Repeat …

6

Quick Sort – Merge

Merge the
sorted portions
in reverse order

4/16/2020

2

7

Quick Sort – Implementation

⚫ An efficient solution can be designed.

def quickSort(theSeq):

n = len(theSeq)

recQuickSort(theSeq, 0, n-1)

def recQuickSort(theSeq, first, last):

if first >= last :

return

else :

Partition the sequence and obtain the pivot position.

pos = partitionSeq(theSeq, first, last)

Repeat the process on the two subsequences.

recQuickSort(theSeq, first, pos - 1)

recQuickSort(theSeq, pos + 1, last)

8

Quick Sort – Partition

⚫ The partitioning step can be done without having to use
temporary storage.
⚫ Rearranges the keys within the sequence structure.

⚫ The pivot will be in its correct position within the sequence.
⚫ Position of the pivot indicates the position where the split

occurred.

9

Quick Sort – Partition

⚫ For illustration, we step through the first complete
partitioning.
⚫ Pivot value is the first key in the segment.
⚫ Two markers (left and right) are initialized.

⚫ The markers will be shifted left and right until they
cross each other.

10

Quick Sort – Partition

⚫ The leftmarker is shifted right until a
key value larger than the pivot is found.

⚫ The rightmarker is then shifted left until
a key value less than the pivot is found.

11

Quick Sort – Partition

⚫ The two keys at the positions of the left
and rightmarkers are swapped.

12

Quick Sort – Partition

⚫ The two markers are again shifted starting
where they left off.

4/16/2020

3

13

Quick Sort – Partition

⚫ After the markers are shifted, the
corresponding keys are swapped as before.

14

Quick Sort – Partition

⚫ The shifting and swapping continues until
the two markers cross each other.

15

Quick Sort – Partition

⚫ When the two markers cross, the right
marker indicates the final position of the pivot
value.

⚫ The pivot value and the value at the right
marker have to be swapped.

16

Quick Sort – Partition
def partitionSeq(theSeq, first, last):

pivot = theSeq[first]

left = first + 1

right = last

while left <= right :

while left < right and theSeq[left] < pivot :

left += 1

while right >= left and theSeq[right] >= pivot :

right -= 1

if left < right : # swap the items at left and right

tmp = theSeq[left]

theSeq[left] = theSeq[right]

theSeq[right] = tmp

if right != first : # put the pivot in its final place

theSeq[first] = theSeq[right]

theSeq[right] = pivot

return right

17

Pivot Key

⚫ We are not limited to selecting the first key
within the sequence as the pivot.

⚫ Using the first or last key is a poor choice in
practice.

⚫ Choosing a key near the middle is a better
choice.

18

Quick Sort – Efficiency

⚫ The quick sort algorithm:
⚫ has a worst case time of O(n2)
⚫ but an average case time of O(n log n)

⚫ It does not require additional storage (in-place).
⚫ Commonly used in language libraries.

⚫ Earlier versions of Python used quick sort.
⚫ Current versions use a hybrid that combines the

insertion and merge sort algorithms.

