
4/5/2020

1

CSCI 204: Data Structures &
Algorithms

Revised by Xiannong Meng based on
textbook author’s notes

1

Binary Search Tree

Revised based on textbook author’s notes.

3

Search Trees

⚫ The tree structure can be used for searching.

⚫ Each node contains a search key as part of
its data.

⚫ Nodes are organized based on the
relationship between the keys.

⚫ Search trees can be used to implement
various types of data structures.

⚫ Most common use is with the Map ADT.

4

Binary Search Tree (BST)

⚫ A binary tree in which each node
contains a search key and the tree is
structured such that for each interior
node V:

⚫ All keys less than the key in node V
are stored in the left subtree of V.

⚫ All keys greater than the key in node
V are stored in the right subtree of V.

5

BST Example

⚫ Consider the example tree

6

BST – ADT
We use an unique name to distinguish this version

from others in the chapter.

class BST :

def __init__(self):

self._root = None

self._size = 0

def __len__(self):

return self._size

...

Storage class for the binary search tree nodes.

class _BSTNode :

def __init__(self, key, data):

self.key = key

self.data = data

self.left = None

self.right = None

bst.py

4/5/2020

2

7

BST – Searching
⚫ A search begins at the root node.

⚫ The target is compared to the key at each
node.

⚫ The path depends on the relationship
between the target and the key in the
node.

8

BST – Search Example

⚫ Suppose we want to search for 29 in our
BST.

9

BST – Search Example

⚫ What if the key is not in the tree? Search
for key 68 in our BST.

10

BST – Search Implementation
class BST :

...

def __contains__(self, key):

return self._bstSearch(self._root, key) is not None

def valueOf(self, key):

node = self._bstSearch(self._root, key)

assert node is not None, "Invalid map key."

return node.value

def _bstSearch(self, subtree, target):

if subtree is None :

return None

elif target < subtree.key :

return self._bstSearch(subtree.left, target)

elif target > subtree.key :

return self._bstSearch(subtree.right, target)

else :

return subtree

bst.py

4/5/2020

3

13

BST – Min or Max Key
⚫ Finding the minimum or maximum key within

a BST is similar to the general search.

⚫ Where might the smallest key be located?

⚫ Where might the largest key be located?

14

BST – Min or Max Key

⚫ The helper method below finds the node
containing the minimum key.
class BST :

...

def _bstMinumum(self, subtree):

if subtree is None :

return None

elif subtree.left is None :

return subtree

else :

return self._bstMinimum(subtree.left)

15

BST – Insertions

⚫ When a BST is constructed, the keys are
added one at a time. As keys are inserted

⚫ A new node is created for each key.

⚫ The node is linked into its proper
position within the tree.

⚫ The search tree property must be
maintained.

16

Building a BST
⚫ Suppose we want to build a BST from

the key list 60 25 100 35 17 80

17

BST – Insertion
⚫ Building a BST by hand is easy. How do we

insert an entry in program code?

⚫ What happens if we use the search method
from earlier to search for key 30?

18

BST – Insertion

⚫ We can insert the new node where the
search fell off the tree.

4/5/2020

4

19

BST – Insert Implementation
class BST :

...

def add(self, key, value):

node = self._bstSearch(key)

if node is not None : # just update the value

node.value = value

return False

else :

self._root = self._bstInsert(self._root, key, value)

self._size += 1

return True

def _bstInsert(self, subtree, key, value):

if subtree is None :

subtree = _BSTMapNode(key, value)

elif key < subtree.key :

subtree.left = self._bstInsert(subtree.left, key, value)

elif key > subtree.key :

subtree.right = self._bstInsert(subtree.right, key, value)

return subtree

bst.py

20

BST – Insert Steps

⚫ Add 30 to our sample BST.

21

BST – Insert Steps

