
4/2/2020

1

CSCI 204: Data Structures &
Algorithms

Revised by Xiannong Meng based on
textbook author’s notes

1

Binary Tree Application
Operations in Heaps

Revised based on textbook author’s notes.

3

Heap Implementation
⚫ While a heap is a binary tree, it's seldom

implemented as a dynamically linked structure.

⚫ Use a sequence to physically store the nodes.

⚫ We could use an array or a Python list

4

Heap – Node Access

⚫ The complete tree will never contain “holes”.

⚫ The root will always be at position 0.

⚫ Its two children will always occupy positions 1
and 2.

⚫ The children of any node will always occupy
the positions in the same relation to their
parent.

5

Heap – Node Access

⚫ Given the array index i

parent = (i-1) // 2

left = 2 * i + 1

right = 2 * i + 2

⚫ A child link is null if the index is out
of range.

6

Heap – Class Definition

class MaxHeap :

def __init__(self, max_size = 16):

self._elements = [None for i in range(max_size)]

self._count = 0

self._max_size = max_size

def __len__(self):

return self._count

def capacity(self):

return len(self._elements)

...

listheap.py

4/2/2020

2

7

Heap – Class Definition
class MaxHeap :

...

def add(self, value):

if self._count >= self.capacity():

self._expand() # double the capacity and copy the content

Add the new value to the end of the list.

self._elements[self._count] = value

self._count += 1

Sift the new value up the tree.

self._sift_up(self._count - 1)

def _sift_up(self, ndx):

if ndx > 0 :

parent = ndx // 2

if self._elements[ndx] > self._elements[parent] :

tmp = self._elements[ndx]

self._elements[ndx] = self._elements[parent]

self._elements[parent] = tmp

self._sift_up(parent)

listheap.py

8

Heap – Class Definition

class MaxHeap :

...

def extract(self):

assert self._count > 0,

"Cannot extract from an empty heap."

value = self._elements[0]

self._count -= 1

self._elements[0] = self._elements[self._count]

self._sift_down(0)

return value

listheap.py

Your Exercise

• Following the pattern of function sift-up(), write the
function sift-down() when the top (root) item is
removed.

11

Heap Example

⚫ Physical view of adding value 90.

12

Heap Example

⚫ Physical view of adding value 90.

13

Heap Analysis

⚫ Assume a heap containing n elements:

⚫ Insertion: O(log n)

⚫ Extraction: O(log n)

⚫ Why?

⚫ Height of the heap is O(log n)

4/2/2020

3

14

The Heapsort

⚫ The simplicity and efficiency of the heap
structure can be applied to the sorting problem.

⚫ Build a heap from a sequence of unsorted
keys.

⚫ Extract the keys from the heap to create a
sorted sequence.

⚫ Very efficient: O(n log n)

15

Heapsort Implementation

⚫ A simple implementation is provided
below.
def simple_heap_sort(the_seq):

Create an array-based max-heap.

n = len(the_seq)

heap = MaxHeap(n)

Build a max-heap from the list of values.

for item in the_seq :

heap.add(item)

Extract each value from the heap and store

them back into the list.

for i in range(n-1, -1, -1) : # small to large

for i in range(n) : # large to small

theSeq[i] = heap.extract()

