
3/29/2020

1

CSCI 204: Data Structures &
Algorithms

Revised by Xiannong Meng based on
textbook author’s notes

1

Binary Tree Application
Expression Tree

Revised based on textbook author’s notes.

3

Expression Trees

⚫ A binary tree in which the operators are
stored in the interior nodes and the operands
are sored in the leaves.
⚫ Used to evaluate an expression.
⚫ Used to convert an infix expression to either

prefix or postfix notation.
⚫ We’ve learned to evaluate expressions using

stacks. The tree implementation will be a good
contrast to that of a stack.

4

Expression Trees
⚫ The tree structure is based on the order in

which the operators are evaluated.

⚫ Operators in lower-level nodes are evaluated
first.

⚫ The last operator evaluated is in the root
node.

5

Expression Tree ADT
⚫ An expression tree is a binary tree

representation of an arithmetic expression.

⚫ Contains various operators (+, -, *, /, %)

⚫ Contains operands comprised of single
integer digits and single-letter variables.

⚫ ExpressionTree(exp_str)

⚫ evaluate(var_dict)

⚫ __str__()

6

Expression Tree Example

⚫ We can use the ADT to evaluate basic arithmetic
expressions of any size.

Create a dictionary containing values for the variables.

vars = { 'a' : 5, 'b' : 12 }

Build the tree for a sample expression and evaluate it.

exp_tree = ExpressionTree("(a/(b-3))")

print("The result = ", exp_tree.evaluate(vars))

We can change the value assigned to a variable

and reevaluate.

vars['a'] = 22

print("The result = ", exp_tree.evaluate(vars))

Try ex1.py

3/29/2020

2

7

Expression Tree Implementation

class ExpressionTree :

def __init__(self, exp_str):

self._exp_tree = None

self._build_tree(exp_str) # recursion

def evaluate(self, var_map):

return self._eval_tree(self._exp_tree, var_map) # recursion

def __str__(self):

return self._build_string(self._exp_tree)

...

Storage class for creating the tree nodes.

class _ExpTreeNode :

def __init__(self, data):

self.element = data

self.left = None

self.right = None

exptree.py

8

Expression Tree Evaluation

⚫ We can develop an algorithm to evaluate the
expression.

⚫ Each subtree represents a valid subexpression.

⚫ Lower-level subtrees have higher precedence.

⚫ For each node, the two subtrees must be
evaluated first.

⚫ How does it work?

9

Evaluation Call Tree

10

Expression Tree Implementation
class ExpressionTree :

...

def _eval_tree(self, subtree, var_dict):

See if the node is a leaf node

if subtree.left is None and subtree.right is None :

Is the operand a literal digit?

if subtree.element >= '0' and subtree.element <= '9' :

return int(subtree.element)

else : # Or is it a variable?

assert subtree.element in var_dict, "Invalid variable."

return var_dict[subtree.element]

Otherwise, it's an operator that needs to be computed.

else : # post-order traversal!

Evaluate the expression in the subtrees.

lvalue = _eval_tree(subtree.left, var_dict)

rvalue = _eval_tree(subtree.right, var_dict)

Evaluate the operator using a helper method.

return compute_op(lvalue, subtree.element, rvalue)

exptree.py

11

String Representation

⚫ To convert an expression tree to a string, we
must perform an infix traversal.

8 * 5 + 9 / 7 - 4

12

String Representation

⚫ The result was not correct because required
parentheses were missing.

⚫ Can easily create a fully parenthesized expression.
((8 * 5) + (9 / (7 - 4)))

3/29/2020

3

13

Expression Tree Implementation
class ExpressionTree :

...

def _build_string(self, tree_node):

If the node is a leaf, it's an operand.

if tree_node.left is None and tree_node.right is None :

return str(tree_node.element)

Otherwise, it's an operator.

else : # in-order traversal!

exp_str = '('

exp_str += self._build_string(tree_node.left)

exp_str += str(tree_node.element)

exp_str += self._build_string(tree_node.right)

exp_str += ')'

return exp_str

exptree.py

14

Expression Tree Construction

⚫ An expression tree is constructed by parsing the
fully-parenthesized expression and examining the
tokens.

⚫ New nodes are inserted as the tokens are
examined.

⚫ Each set of parentheses will consist of:
− an interior node for the operator

− two children either single valued or a subexperssion.

15

Expression Tree Construction

⚫ For simplicity, we assume:

⚫ the expression is stored in a string with no
white space.

⚫ the expression is valid and fully
parenthesized.

⚫ each operand will be a single-digit or single-
letter variable.

⚫ the operators will consist of +, -, *, /, %

16

Expression Tree Construction

⚫ Consider the expression (8*5)

⚫ The process starts with an empty root node set as
the current node:

⚫ The action at each step depends on the current
token.

17

Expression Tree Construction

⚫ When a left parenthesis is encountered: (8*5)

⚫ a new node is created and linked as the left
child of the current node.

⚫ descend down to the new node.

18

Expression Tree Construction

⚫ When an operand is encountered: (8*5)

⚫ the data field of the current node is set to
contain the operand.

⚫ move up to the parent of current node.

3/29/2020

4

19

Expression Tree Construction
⚫ When an operator is encountered: (8*5)

⚫ the data field of the current node is set to the operator.

⚫ a new node is created and linked as the right child of the
current node.

⚫ descend down to the new node.

20

Expression Tree Construction

⚫ Another operand is encountered: (8*5)

21

Expression Tree Construction

⚫ When a right parenthesis: (8*5)

⚫ move up to the parent of the current node.

22

Expression Example #2

⚫ Consider another expression: ((2*7)+8)

23

Expression Tree
Implementation

class ExpressionTree :

...

def _build_tree(self, exp_str):

Build a queue containing the tokens from the expression.

expQ = Queue()

for token in exp_str :

expQ.enqueue(token)

Create an empty root node.

self._exp_tree = _ExpTreeNode(None)

Call the recursive function to build the tree.

self._rec_build_tree(self._exp_tree, expQ)

exptree.py

24

Expression Tree Implementation
class ExpressionTree :

...

def _rec_build_tree(self, cur_node, expQ):

Extract the next token from the queue.

token = expQ.dequeue()

See if the token is a left paren: '('

if token == '(' :

cur_node.left = _ExpTreeNode(None)

build_treeRec(cur_node.left, expQ)

The next token will be an operator: + - / * %

cur_node.data = expQ.dequeue()

cur_node.right = _ExpTreeNode(None)

self._build_tree_rec(cur_node.right, expQ)

The next token will be a), remove it.

expQ.dequeue()

Otherwise, the token is a digit.

else :

cur_node.element = token

exptree.py

