
3/26/2020

1

CSCI 204: Data Structures &
Algorithms

Revised by Xiannong Meng based on
textbook author’s notes

1

Binary Tree Implementation

Revised based on textbook author’s notes.

3

Binary Tree Implementation

⚫ Many different implementations.
We’ll discuss two.

⚫ Linked node based

⚫ Array based

Linked node based

4

The storage class for creating binary tree nodes.

class BinTreeNode :

def __init__(self, data):

self.data = data

self.left = None

self.right = None

def set_left(self, leftnode):

”””Set the incoming node as the left child”””

self.left = leftnode

”””similar functions follow”””

def set_right(self, rightnode):

def set_data(self, new_data):

def get_data(self):

def get_left(self):

def get_right(self):

bintreenode.py

5

Physical Implementation

testbintree.py
6

Tree Traversals

⚫ Iterates through the nodes of a tree, one
node at a time in order to visit every node.

⚫ With a linear structure this was simple.

⚫ How is this done with a hierarchical
structure?
− Must begin at the root node.

− Every node must be visited.

− Typically results in a recursive solution.

3/26/2020

2

7

Preorder Traversal

⚫ After visiting the root,

⚫ traverse the nodes in the left subtree

⚫ then traverse the nodes in the right subtree.

8

Preorder Traversal

9

Preorder Traversal

⚫ The implementation is rather simple.

⚫ Given a binary tree of size n, a complete
traversal requires O(n) to visit every node.

def preorderTrav(subtree):

if subtree is not None :

print(subtree.data)

preorderTrav(subtree.left)

preorderTrav(subtree.right)

10

Inorder Traversal

⚫ Similar to the preorder traversal, but we
traverse the left subtree before visiting the
node.

11

Inorder Traversal

⚫ The implementation swaps the order of
the visit operation and the recursive calls.

def inorderTrav(subtree):

if subtree is not None :

inorderTrav(subtree.left)

print(subtree.data)

inorderTrav(subtree.right)

12

Postorder Traversal
⚫ Is the opposite of the preorder traversal.

⚫ Traverse both the left and right subtrees
before visiting the node.

3/26/2020

3

13

Postorder Traversal

⚫ The implementation swaps the order of the
visit operation and the recursive calls.

def postorderTrav(subtree):

if subtree is not None :

postorderTrav(subtree.left)

postorderTrav(subtree.right)

print(subtree.data)

14

Breadth-First (level order) Traversal

⚫ The nodes are visited by level, from left to
right. (a.k.a. level-order traversal)

⚫ The previous traversals are all depth-first
traversals.

15

Breadth-First Traversal

⚫ Recursion can not be used with this traversal.

⚫ We can use a queue and an iterative loop.
def breadthFirstTrav(bintree):

Queue q

q.enqueue(bintree)

while not q.isEmpty() :

Remove the next node from the queue and visit it.

node = q.dequeue()

print(node.data)

Add the two children to the queue.

if node.left is not None :

q.enqueue(node.left)

if node.right is not None :

q.enqueue(node.right)

Array based binary trees

• It is very natural to implement binary trees using
linked nodes.

• For binary tree that has “many” nodes, it may be
more effective and efficient to implement it using an
array!

