
3/5/2020

1

CSCI 204: Data Structures &
Algorithms

1

Priority Queue ADT

Revised based on textbook author’s notes.

3

Priority Queues

 Some applications require the use
of a queue in which items are
assigned a priority.

 higher priority items are
dequeued first.

 items with equal priority still
follow FIFO.

Some Applications

• Operating systems such as Linux use priority queues
to manage their jobs (try e.g., the top command)

• Simulations use priority queues to manage events to
be simulated

• All other FIFO queues, e.g., online shopping queues
are special cases of priority queue, that is, time of
arrival is the priority

5

The Priority Queue ADT
 A priority queue is a queue in which each item is

assigned a priority and items with a higher
priority are removed before those with lower
priority.

 Integer values are used for the priorities.

 Smaller integers have a higher priority. Other
arrangements, such as larger values represent
higher priority are possible.

The Operations

6

 PriorityQueue()

 is_empty()

 len()

 enqueue(item, priority)

 dequeue()

 peek()

3/5/2020

2

7

Priority Queue Example

 Consider the following code segment:
Q = PriorityQueue(6)

Q.enqueue(“purple”, 5)

Q.enqueue(“black”, 1)

Q.enqueue(“orange”, 3)

Q.enqueue(“white”, 0)

Q.enqueue(“green”, 1)

Q.enqueue(“yellow”, 5)

8

Priority Queue Implementation

 How should the ADT be implemented. We
must consider:

 A priority must be associated with each
item in the queue.

 The next item to be dequeued is the item
with the highest priority.

 If multiple items have the same priority,
those must be dequeued in a FIFO order.

Priority Queue Implementation

• There can be many different implementations, we’ll
consider three here

– Textbook approach

– Linked list

– Bounded array with linked lists

10

1. Textbook approach

 The priority queue is implemented as a Python
list

 The enqueue operation puts the item at the end
of the queue (as in our FIFO queue)

 The dequeue operation takes the item with the
highest priority off the queue (note: the item
could be anywhere in the queue!)

Queue operations

priorityq.py

Details of find_top_priority()
Basically it is the same process of finding a
minimum in a list.

def find_top_priority(self):
highest_index = 0
highest = self._qlist[highest_index].priority
for i in range(len(self)):

if highest > self._qlist[i].priority: # smaller value has higher priority
highest_index = i
highest = self._qlist[i].priority

return highest_index

Try the program testpriorityqueue.py

3/5/2020

3

Complexity of operations
What is the complexity for dequeue?

O(n)

What is the complexity for enqueue?

O(1)

14

2. Bounded Priority Queue

 A bounded priority queue has a fixed set of
priorities

 We use an array to represent the set of
priorities, each array element maintains a
queue of the items with the same priority

15

Bounded Priority Queue

 The following example shows a bounded
priority queue with six levels

16

Bounded Priority Q
Implementation

from array204 import Array

from llistqueue import Queue

class BPriorityQueue :

def __init__(self, num_levels = 6):

self._qsize = 0

self._qlevels = Array(num_levels)

for i in range(num_levels) :

self._qlevels[i] = Queue()

def is_empty(self):

return len(self) == 0

def __len__(self):

return len(self._qsize)

...

bpriorityq.py

17

Bounded Priority Q
Implementation

class BPriorityQueue :

...

def enqueue(self, item, priority):

assert priority >= 0 and priority < len(self._qlevels), \

"Invalid priority level."

self._qlevels[priority].enqueue(item)

def dequeue(self) :

Make sure the queue is not empty.

assert not self.is_empty(), "Cannot dequeue from an empty queue."

Find the first non-empty queue.

top_index = self.find_top_priority_queue()

We know the queue is not empty, so dequeue from the ith queue.

return self._qlevels[top_index].dequeue()

bpriorityq.py

18

Bounded Priority Q
Implementation

class BPriorityQueue :

...

def find_top_priority_queue(self):

find the first non-empty queue,

a.k.a. highest priority

i = 0

p = len(self._qlevels)

while i < p and self._qlevels[i].is_empty() :

i += 1

return i

bpriorityq.py

3/5/2020

4

19

3. Unbounded Priority Q: Linked List

 We can use a singly linked list:

 Head and tail references.

 Append new entries to the end.

20

Priority Queue Analysis

Queue Operation Python List Linked List

q = PriorityQueue() O(1) O(1)

len(q) O(1) O(1)

q.is_empty() O(1) O(1)

q.enqueue(x) O(n) O(1)

x = q.dequeue() O(n) O(n)

 The worst case analysis for the two
implementations.

21

3a. Unbounded Priority Q: Linked List

 We can use a singly linked list:

 Head and tail references.

 Insert (enqueue) new item at the correct
place

 Remove (dequeuer) at the beginning of the
queue.

Implement enqueue()

• Your task is to implement the enqueue() method for
a linked list based queue as in 3a in which other
necessary methods have been implemented

