

Priority Queues

- Some applications require the use of a queue in which items are assigned a priority.
- higher priority items are dequeued first.
- items with equal priority still follow FIFO.

Some Applications

- Operating systems such as Linux use priority queues to manage their jobs (try e.g., the **top** command)
- Simulations use priority queues to manage events to be simulated
- All other FIFO queues, e.g., online shopping queues are special cases of priority queue, that is, time of arrival is the priority

The Priority Queue ADT

- A *priority queue* is a queue in which each item is assigned a priority and items with a higher priority are removed before those with lower priority.
 - Integer values are used for the priorities.
 - Smaller integers have a higher priority. Other arrangements, such as larger values represent higher priority are possible.

Priority Queue Example

- Consider the following code segment:
 - Q = PriorityQueue (6) Q.enqueue("purple", 5) Q.enqueue("black", 1) Q.enqueue("orange", 3) Q.enqueue("wrenge", 3) Q.enqueue("green", 1) Q.enqueue("green", 5)

(0) "white" (1) "black" (1) "green" (3) "orange" (5) "purple" (5) "yellow" |

Priority Queue Implementation

- How should the ADT be implemented. We must consider:
- A priority must be associated with each item in the queue.
- The next item to be dequeued is the item with the highest priority.
- If multiple items have the same priority, those must be dequeued in a FIFO order.

Priority Queue Implementation

- There can be many different implementations, we'll consider three here
 - Textbook approach
 - Linked list
 - Bounded array with linked lists

1. Textbook approach

- The priority queue is implemented as a Python
 list
- The enqueue operation puts the item at the end of the queue (as in our FIFO queue)
- The dequeue operation takes the item with the highest priority off the queue (note: the item could be anywhere in the queue!)

Concerned concerned

2. Bounded Priority Queue

- A bounded priority queue has a fixed set of priorities
- We use an array to represent the set of priorities, each array element maintains a queue of the items with the same priority

The worst case analysis for the tw implementations.		
q = PriorityQueue()	O(1)	O(1)
en(q)	O(1)	O(1)
q.is_empty()	O(1)	O(1)
q.enqueue(x)	O(n)	O(1)
= q.dequeue()	O(n)	O(n)

3a. Unbounded Priority Q: Linked List

• We can use a singly linked list:

- Head and tail references.
- Insert (enqueue) new item at the correct place
- Remove (dequeuer) at the beginning of the queue.

Implement enqueue()

• Your task is to implement the enqueue() method for a linked list based queue as in 3a in which other necessary methods have been implemented