
3/5/2020

1

CSCI 204: Data Structures &
Algorithms

1

Priority Queue ADT

Revised based on textbook author’s notes.

3

Priority Queues

 Some applications require the use
of a queue in which items are
assigned a priority.

 higher priority items are
dequeued first.

 items with equal priority still
follow FIFO.

Some Applications

• Operating systems such as Linux use priority queues
to manage their jobs (try e.g., the top command)

• Simulations use priority queues to manage events to
be simulated

• All other FIFO queues, e.g., online shopping queues
are special cases of priority queue, that is, time of
arrival is the priority

5

The Priority Queue ADT
 A priority queue is a queue in which each item is

assigned a priority and items with a higher
priority are removed before those with lower
priority.

 Integer values are used for the priorities.

 Smaller integers have a higher priority. Other
arrangements, such as larger values represent
higher priority are possible.

The Operations

6

 PriorityQueue()

 is_empty()

 len()

 enqueue(item, priority)

 dequeue()

 peek()

3/5/2020

2

7

Priority Queue Example

 Consider the following code segment:
Q = PriorityQueue(6)

Q.enqueue(“purple”, 5)

Q.enqueue(“black”, 1)

Q.enqueue(“orange”, 3)

Q.enqueue(“white”, 0)

Q.enqueue(“green”, 1)

Q.enqueue(“yellow”, 5)

8

Priority Queue Implementation

 How should the ADT be implemented. We
must consider:

 A priority must be associated with each
item in the queue.

 The next item to be dequeued is the item
with the highest priority.

 If multiple items have the same priority,
those must be dequeued in a FIFO order.

Priority Queue Implementation

• There can be many different implementations, we’ll
consider three here

– Textbook approach

– Linked list

– Bounded array with linked lists

10

1. Textbook approach

 The priority queue is implemented as a Python
list

 The enqueue operation puts the item at the end
of the queue (as in our FIFO queue)

 The dequeue operation takes the item with the
highest priority off the queue (note: the item
could be anywhere in the queue!)

Queue operations

priorityq.py

Details of find_top_priority()
Basically it is the same process of finding a
minimum in a list.

def find_top_priority(self):
highest_index = 0
highest = self._qlist[highest_index].priority
for i in range(len(self)):

if highest > self._qlist[i].priority: # smaller value has higher priority
highest_index = i
highest = self._qlist[i].priority

return highest_index

Try the program testpriorityqueue.py

3/5/2020

3

Complexity of operations
What is the complexity for dequeue?

O(n)

What is the complexity for enqueue?

O(1)

14

2. Bounded Priority Queue

 A bounded priority queue has a fixed set of
priorities

 We use an array to represent the set of
priorities, each array element maintains a
queue of the items with the same priority

15

Bounded Priority Queue

 The following example shows a bounded
priority queue with six levels

16

Bounded Priority Q
Implementation

from array204 import Array

from llistqueue import Queue

class BPriorityQueue :

def __init__(self, num_levels = 6):

self._qsize = 0

self._qlevels = Array(num_levels)

for i in range(num_levels) :

self._qlevels[i] = Queue()

def is_empty(self):

return len(self) == 0

def __len__(self):

return len(self._qsize)

...

bpriorityq.py

17

Bounded Priority Q
Implementation

class BPriorityQueue :

...

def enqueue(self, item, priority):

assert priority >= 0 and priority < len(self._qlevels), \

"Invalid priority level."

self._qlevels[priority].enqueue(item)

def dequeue(self) :

Make sure the queue is not empty.

assert not self.is_empty(), "Cannot dequeue from an empty queue."

Find the first non-empty queue.

top_index = self.find_top_priority_queue()

We know the queue is not empty, so dequeue from the ith queue.

return self._qlevels[top_index].dequeue()

bpriorityq.py

18

Bounded Priority Q
Implementation

class BPriorityQueue :

...

def find_top_priority_queue(self):

find the first non-empty queue,

a.k.a. highest priority

i = 0

p = len(self._qlevels)

while i < p and self._qlevels[i].is_empty() :

i += 1

return i

bpriorityq.py

3/5/2020

4

19

3. Unbounded Priority Q: Linked List

 We can use a singly linked list:

 Head and tail references.

 Append new entries to the end.

20

Priority Queue Analysis

Queue Operation Python List Linked List

q = PriorityQueue() O(1) O(1)

len(q) O(1) O(1)

q.is_empty() O(1) O(1)

q.enqueue(x) O(n) O(1)

x = q.dequeue() O(n) O(n)

 The worst case analysis for the two
implementations.

21

3a. Unbounded Priority Q: Linked List

 We can use a singly linked list:

 Head and tail references.

 Insert (enqueue) new item at the correct
place

 Remove (dequeuer) at the beginning of the
queue.

Implement enqueue()

• Your task is to implement the enqueue() method for
a linked list based queue as in 3a in which other
necessary methods have been implemented

