
3/3/2020

1

CSCI 204: Data Structures &
Algorithms

1

Circular Queue

Revised based on textbook author’s notes.

3

Queue

 A restricted access container that stores a linear collection.

 Very common for solving problems in computer science that
require data to be processed in the order in which it was
received.

 Provides a first-in first-out (FIFO) protocol.

 New items are added at the back while existing items are
removed from the front of the queue.

4

The Queue ADT

 A queue stores a linear collection of items with
access limited to a first-in first-out order.

 New items are added to the back.

 Existing items are removed from the front.

 Queue()

 is_empty()

 len()

 enqueue(item)

 dequeue()

5

Queue: Circular Array

 circular array – an array viewed as a circle instead of a line.

 Items can be added/removed without having to shift the
remaining items in the process.

 Introduces the concept of a maximum-capacity queue that
can become full.

6

Queue: Circular Array
 How should the data be organized within the

array?

 count field – number of items in the queue.

 front and back markers – indicate the array
elements containing the queue items.

3/3/2020

2

7

Queue: Circular Array

 To enqueue an item:

 new item is inserted at the position following back

 back is advanced by one position

 count is incremented by one.

 Suppose we enqueue 32:

8

Queue: Circular Array

 To dequeue an item:

 the value in the front position is saved

 front is advanced by one position.

 count is decremented by one.

 Suppose we dequeue an item:

9

Queue: Circular Array

 Suppose we enqueue items 8 and 23:

10

Queue: Circular Array

 What happens if we enqueue 39?

 Since we are using a circular array, the same
steps are followed.

 But since back is at the end of the array, it wraps
around to the front.

11

Queue: Circular Array
class Queue :

def __init__(self, max_size) :

self._count = 0

self._front = 0

self._back = max_size - 1

self._qarray = Array(max_size)

def is_empty(self) :

return self._count == 0

A new operation specifically for the circular array.

def is_full(self) :

return self._count == len(self._qarray)

def __len__(self) :

return self._count

...

arrayqueue.py

12

Queue: Circular Array

class Queue :

...

def enqueue(self, item):

assert not self.is_full(), "Cannot enqueue to a full queue."

max_size = len(self._qarray)

self._back = (self._back + 1) % max_size

self._qarray[self._back] = item

self._count += 1

def dequeue(self):

assert not self.is_empty(), "Cannot dequeue from an empty queue."

item = self._qarray[self._front]

max_size = len(self._qarray)

self._front = (self._front + 1) % max_size

self._count -= 1

return item

arrayqueue.py

3/3/2020

3

13

Queue Analysis: Circular
Array

Queue Operation Worst Case

q = Queue() O(1)

len(q) O(1)

q.is_empty() O(1)

q.is_full() O(1)

q.enqueue(x) O(1)

x = q.dequeue() O(1)

Your Exercise

• The circular queue we just implemented uses a count to
control how the queue operates.

• Your exercise is to implement the same circular queue
without the count variable.

• The basic idea is to use the relation between front and
back to manage the queue.

• Note that without a count, one can’t tell the difference
between a full queue or empty queue if front ==
back, so the two have to be different when queue is
empty or full.

