
2/27/2020

1

Queue ADT

Revised based on textbook author’s notes.

CSCI 204: Data Structures &
Algorithms

2

Queue

 A restricted access container that stores a linear
collection.
 Very common for solving problems in computer science that

require data to be processed in the order in which it was
received.

 Provides a first-in first-out (FIFO) protocol.

 New items are added at the back while existing
items are removed from the front of the queue.

3

The Queue ADT

 A queue stores a linear collection of items with
access limited to a first-in first-out order.

 New items are added to the back.

 Existing items are removed from the front.

 Queue()

 is_empty()

 len()

 enqueue(item)

 dequeue() 4

Queue Example

 The following code creates the queue from
the earlier slide.

Q = Queue()

Q.enqueue(28)

Q.enqueue(19)

Q.enqueue(45)

Q.enqueue(13)

Q.enqueue(7)

5

Queue Example

 We can remove items from the queue and add
more items.

x = Q.dequeue()

Q.enqueue(21)

Q.enqueue(74)

6

Queue Implementation

 Several common ways to implement a queue:

 Python list
 easiest to implement

 Linked list
 reduces memory wastes by eliminating the extra

capacity created with an array.

 Circular array
 fast operations with a fixed size queue.

2/27/2020

2

7

Queue: Python List

 How is the data organized within the Python
list?

 Add new items to the end of the list.

 Remove items from the front of the list.

8

Queue: Python List

Implementation of the Queue ADT using a Python list.

class Queue :

 def __init__(self):

 self._qlist = list()

 def is_empty(self):

 return len(self) == 0

 def __len__(self):

 return len(self._qlist)

 def enqueue(self, item):

 self._qlist.append(item)

 def dequeue(self):

 assert not self.is_empty(), "Cannot dequeue from an empty queue."

 return self._qlist.pop(0)

pylistqueue.py

9

Queue Analysis: Python List

Queue Operation Worst Case

q = Queue() O(1)

len(q) O(1)

q.is_empty() O(1)

q.enqueue(x) O(n)*

x = q.dequeue() O(n)

* While the enqueue() operation itself is O(1), the
queue potentially needs to be expanded, which is O(n).

10

Queue: Linked List

 How should the data be organized?

 Use both head and tail references.

 Let the head of the list represent the front of
the queue and the tail the back.

Your in-class work

• Implement a linked list queue

• Test your implementation with
test_linkedlist_queue.py

