
2/27/2020

1

Queue ADT

Revised based on textbook author’s notes.

CSCI 204: Data Structures &
Algorithms

2

Queue

 A restricted access container that stores a linear
collection.
 Very common for solving problems in computer science that

require data to be processed in the order in which it was
received.

 Provides a first-in first-out (FIFO) protocol.

 New items are added at the back while existing
items are removed from the front of the queue.

3

The Queue ADT

 A queue stores a linear collection of items with
access limited to a first-in first-out order.

 New items are added to the back.

 Existing items are removed from the front.

 Queue()

 is_empty()

 len()

 enqueue(item)

 dequeue() 4

Queue Example

 The following code creates the queue from
the earlier slide.

Q = Queue()

Q.enqueue(28)

Q.enqueue(19)

Q.enqueue(45)

Q.enqueue(13)

Q.enqueue(7)

5

Queue Example

 We can remove items from the queue and add
more items.

x = Q.dequeue()

Q.enqueue(21)

Q.enqueue(74)

6

Queue Implementation

 Several common ways to implement a queue:

 Python list
 easiest to implement

 Linked list
 reduces memory wastes by eliminating the extra

capacity created with an array.

 Circular array
 fast operations with a fixed size queue.

2/27/2020

2

7

Queue: Python List

 How is the data organized within the Python
list?

 Add new items to the end of the list.

 Remove items from the front of the list.

8

Queue: Python List

Implementation of the Queue ADT using a Python list.

class Queue :

 def __init__(self):

 self._qlist = list()

 def is_empty(self):

 return len(self) == 0

 def __len__(self):

 return len(self._qlist)

 def enqueue(self, item):

 self._qlist.append(item)

 def dequeue(self):

 assert not self.is_empty(), "Cannot dequeue from an empty queue."

 return self._qlist.pop(0)

pylistqueue.py

9

Queue Analysis: Python List

Queue Operation Worst Case

q = Queue() O(1)

len(q) O(1)

q.is_empty() O(1)

q.enqueue(x) O(n)*

x = q.dequeue() O(n)

* While the enqueue() operation itself is O(1), the
queue potentially needs to be expanded, which is O(n).

10

Queue: Linked List

 How should the data be organized?

 Use both head and tail references.

 Let the head of the list represent the front of
the queue and the tail the back.

Your in-class work

• Implement a linked list queue

• Test your implementation with
test_linkedlist_queue.py

