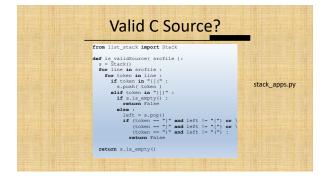
CSCI 204: Data Structures & Algorithms

Stack Applications

Stack Applications

- Many applications encountered in computer science requires the use of a stack.
 - Balanced delimiters
 - Postfix expressions


Balanced Delimiters

- Many applications use delimiters to group strings of text or simple data into subparts.
 - mathematical expressions
 - programming languages
 - HTML markup

Source Code Example

- The delimiters must be paired and balanced.
- We can design and implement an algorithm to:
 read a C source file, and
 - determine if the delimiters are properly paired.

Mathematical Expressions

- We work with mathematical expressions on a regular basis.
 - Easy to determine the order of evaluation. Easy to calculate.
- But the task is more difficult in computer programs.
 - A program cannot visualize the expression to determine the order of evaluation.
 - Must examine one token at a time.

Types of Expressions

- Three different notations can be used:
 - infix: A + B * C
 - Easy for humans, but challenge for program, should we evaluate A+B first or B*C first?
- prefix: + A * B C
- postfix: A B C * +
- Very natural for program to handle

Infix to Postfix

• Infix expressions can be easily converted by hand to postfix notation.

A * B + C / D

1. Fully parenthesize the expression.

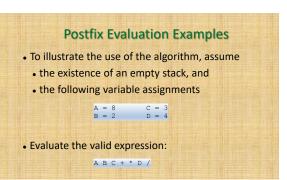
((A * B) + (C / D))

2. For each set of (), move operator to the end of the closing parenthesis. ((A B *) (C D /) +)

Infix to Postfix (cont)

• The expression at the end of step 2: ((A B *) (C D /) +)

3. Remove all of the parentheses.


A B * C D / +

• Which results in the postfix version.

The implementation of infix2postfix.py is left as a part of the lab exercise.

Evaluating Postfix Expressions

- We can evaluate a valid postfix expression using a stack structure.
- For each token:
- 1 If the current token is an operand, push its value onto the stack.
- 2. If the current token is an operator:
 - pop the top two operands off the stack.
 perform the operation (top value is RHS op
 - perform the operation (top value is RHS operand).
 push the result of the operation back on the stack.
- The final result will be the last value on the stack.

477	Description	Stack	Alg Step	Token
	push value of A	8	1	ABC+*D/
	push value of B	8 2	1	ABC+*D/
	push value of C	823	1	ABC+*D/
	pop top two values: y = 3, x = 2	8	2(a)	ABC+*D/
	compute z = x + y or z = 2 + 3	8	2(b)	
1	push result (5) of the addition	8 5	2(c)	
	pop top two values: y = 5, x = 8		2(a)	ABC+*D/
1	compute z = x * y or z = 8 * 5		2(b)	
ation	push result (40) of the multiplication	40	2(c)	
	push value of D	40 4	1	ABC+*D/
0	pop top two values: y = 4, x = 40		2(a)	ABC+*D/
	compute z = x / y or z = 40 / 4		2(b)	
	push result (10) of the division	10	2(c)	

		P	ostfix Example
Wha	t hap		the expression is
inval	id?	A B *	CD+
Token	Alg Step	Stack	Description
AB*CD+	1	8	push value of A
AB*CD+	1	8 2	push value of B
AB*CD+	2(a)		pop top two values: y = 2, x = 8
	2(b)		compute z = x * y or z = 8 * 2
	2(c)	16	push result (16) of the multiplication
AB*CD+	1	16 3	push value of C
AB*CD+	1	16 3 4	push value of D
AB*CD+	2(a)	16	pop top two values: y = 4, x = 3
	2(b)	16	compute z = x + y or z = 3 + 4
	2(c)	16 7	push result (7) of the addition
Error	XXXXXX	XXXXXX	Too many values left on the stack.