
2/4/2020

1

CSCI 204: Data Structures &
Algorithms

ADT: Operator
Overloading

1

Quick review: operator overloading

• We have learned some basic features of OOP, e.g. the Date
class

– Constructor: def __init__(self)

– String representation: def __str__(self), or def
__repr__(self)

– Method within a class: def is_leap_year(self)

– Object attributes (object variables …) self.year,
self.month, self.day.

• We will discuss and practice the topic of operator overloading

What does it mean?

• An operator such as ‘==‘, ‘>’ can be associated with a
function to reflect its meaning.

• E.g., in our Date class, we have three functions
– is_equal(), is_before(), is_after()
– When comparing two Date objects, we’d say

d1.is_equal(d2), d1.is_before(d2), d1.is_after(d2)
• If we implement operator overloads for the Date class,

we could have said
– d1 == d2, d1 < d2, d1 > d2

Overloading ‘==‘
class Date:

…
def __eq__(self, other):

if self.year == other.year and \
self.month == other.month and \
self.day == other.day:
return True

else:
return False

class Date:
…
def __eq__(self, other):

if self.is_equal(other):
return True

else:
return False

class Date:
…
def __eq__(self, other):

return self.is_equal(other)

If the function is_equal() has been defined, we can do one of the following…

Overloading ‘>‘

class Date:
…
def __gt__(self, other):

return self.is_after(other)

Overloading ‘>=‘

class Date:
…
def __ge__(self, other):

return self.is_after(other) or \
self.is_equal(other)

Other operator overload

• Python supports more operator overload

– __ne__ : not equal

– __contains__ : membership check

– __add__ : add to the collection (+)

– __iadd_ : for +=

• See album_app demonstration
album_app.py, album.app, song.py, date.py

2/4/2020

2

Build a Rational ADT

• A rational is a fraction number such that both the enumerator
and the denominator are integers, relatively prime to each
other

• Build a Rational ADT such that

– Support common arithmetic rational operations

– x, y are two Rationals, x+y, x-y, x*y, x//y are all Rationals

– Support comparisons

– x,y are two Rationals, x < y, x <= y, x == y, x >= y, x > y
returns a True or False

Help function gcd(a,b)

• You’d need a gcd(a,b) function that returns the
greatest common divisor of two integers a and b

def gcd(self, a, b):
""" Return the greastest common divisor of a and b
"""
if b == 0:

return a
else:

return self.gcd(b, a % b)

Examples of Rational

• x = 2/3, y = 1/2
• x + y == 7 / 6
• x - y == 1/6, y - x == - 1/6
• x * y == 1/3
• x // y == 4/3
• x > y True
• x >= y True
• x == y False
• x < y False
• x <= y False
• Test program is on the course website, once finished your implementation, try it

out.

