CSCI 204: Data Structures & Algorithms **ADT: Operator**

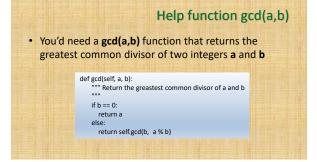
Overloading

Quick review: operator overloading


- We have learned some basic features of OOP, e.g. the Date class
 - Constructor: def __init__(self)
 - String representation: def __str__(self), or def __repr_(self)
 - Method within a class: def is_leap_year(self)
 - Object attributes (object variables ...) self.year, self.month, self.day.
- We will discuss and practice the topic of operator overloading

What does it mean?

- An operator such as '==', '>' can be associated with a function to reflect its meaning.
- · E.g., in our Date class, we have three functions - is_equal(), is_before(), is_after()


 - When comparing two Date objects, we'd say d1.is_equal(d2), d1.is_before(d2), d1.is_after(d2)
- · If we implement operator overloads for the Date class, we could have said
 - d1 == d2, d1 < d2, d1 > d2

Overloa	ading '=='
class Date:	
	other.year and \ == other.month and \ other.day:
If the function is_equal() has been	n defined, we can do one of the following
class Date:	class Date:
_ defeq_(self, other):	defeq(self, other): return self.is_equal(other)

Build a Rational ADT

- A rational is a fraction number such that both the enumerator and the denominator are integers, relatively prime to each other
- Build a Rational ADT such that
 - Support common arithmetic rational operations
 - x, y are two Rationals, x+y, x-y, x*y, x//y are all Rationals
 - Support comparisons
 - x, y are two Rationals, x < y, x <= y, x == y, x >= y, x > y returns a True or False

	Examples of Rationa
	x = 2/3, y = 1/2
	x + y = 7/6
•	x - y == 1/6, y - x == - 1/6
•	x * y == 1/3
•	x // y == 4/3
•	x > y True
•	x >= y True
•	x == y False
•	x < y False
•	x <= y False
	Test program is on the course website, once finished your implementation, try it out.