
1/29/2020

1

CSCI 204: Data Structures &
Algorithms

Algorithm Analysis

1

def is_name_in_list(my_list, search_name):
for item in my_list:

if item == search_name:
return True

return False

Pretend we had a list with x different names.
We build the following method to see if a name is in
our list:

How do we measure the “speed” of a program?
What do we need to know to determine how fast this will run?

Why does this matter?

• Computers are so fast! But…

• Large Scale Data

– Google, Twitter, Facebook.. Big Data

• Limited Resources

– phones, watches, wearable computing

• High Performance Environments

– milliseconds matter

Measure the work instead of timing

• If we actually measure time, e.g., using the Linux
time command, we can’t account for the speed
differences among different computers.

• Rather, we’d measure the steps an algorithm or a
program will take when comparing them.

• Try a few examples with the time command …

Big-O Notation

• No need to count precise number of steps

• Classify algorithms by order of magnitude

– Execution time

– Space requirements

• Big O gives us a rough upper bound

• Goal is to give you intuition

How do we know what matters in code?

1

1 * (n)

1

2n+3

1 * (n)

1

1/29/2020

2

How do we know what matters in code?

Pay attention to what changes as the variables increases

2n+3

2n+6O(n)

Describing Growth

Let’s Visualize It
See for example:
http://science.slc.edu/jmarshall/courses/2002/spring/cs50/BigO/index.html

Does it REALLY matter?

• Try out two examples

– time python bubblesort.py

– time python quicksort.py

• Try out a few more examples from mainRun.py
which calls various operations in bigO.py

Definition
 Given a function T(n)

 # of steps required for an input of size n.
 Ex: T2(n) = n2 + n

 Suppose there exist a function f(n) for all integers n > 0
such that

for some constant c and for all large values of n > m (a
constant).

T(n) < c f(n)

We say function T(n) is on the order of f(n). In our above example, T(n) is
on the order of n2.

Code Examples

3 n^2 + 10 n log n

n log n + n/2

O(n^2)

O(n log n)

0.01n + 100n^2

100n + 0.1n^2

5 + 0.001n^3 + 0.025n

O(n^2)

O(n^2)

O(n^3)

What is the Big O?

http://science.slc.edu/jmarshall/courses/2002/spring/cs50/BigO/index.html

1/29/2020

3

Code Evaluation #1

def ex1(n):

count = 0

for i in range(n):

count += i

return count

Code Evaluation #2

def ex2(n):

count = 0

for i in range(n):

count += 1

for j in range(n):

count += 1

return count

Code Evaluation #3
def ex3(n):

count = 0

for i in range(n):

for j in range(n):

count += 1

return count

def ex3b(n):

count = 0

for i in range(n):

count += ex3(n)

return count

Code Evaluation #4
def ex4(n):

count = 0

for i in range(n):

for j in range(25):

count += 1

return count

17

Code Evaluation #6
def ex6(n):

count = 0

i = n

while i >= 1 :

count += 1

i = i // 2

return count

18

Code Evaluation #7
def ex6(n):

count = 0

i = n

while i >= 1 :

count += 1

i = i // 2

return count

def ex7(n):

count = 0

for i in range(n) :

count += ex6(n)

return count

