CSCI 204: Data Structures \& Algorithms

Algorithm Analysis

Why does this matter?

- Computers are so fast! But...
- Large Scale Data
- Google, Twitter, Facebook.. Big Data
- Limited Resources
- phones, watches, wearable computing
- High Performance Environments
- milliseconds matter

Big-O Notation

- No need to count precise number of steps
- Classify algorithms by order of magnitude
- Execution time
- Space requirements
- Big O gives us a rough upper bound
- Goal is to give you intuition

Measure the work instead of timing

- If we actually measure time, e.g., using the Linux time command, we can't account for the speed differences among different computers.
- Rather, we'd measure the steps an algorithm or a program will take when comparing them.
- Try a few examples with the time command ...

How do we know what matters in code?

How do we know what matters in code?

Describing Growth

Let's Visualize It
See for example:
http://science.slc.edu/jmarshall/courses/2002/spring/cs50/BigO/index.html

Does it REALLY matter?

- Try out two examples
-time python bubblesort.py
-time python quicksort.py
- Try out a few more examples from mainRun.py which calls various operations in bigO.py

Definition

- Given a function $T(n)$
- \# of steps required for an input of size n.
- Ex: $T_{2}(n)=n^{2}+n$
- Suppose there exist a function $f(n)$ for all integers $n \geq 0$ such that

$$
T(n) \leq c f(n)
$$

for some constant c and for all large values of $n \geq m$ (a constant).

We say function $T(n)$ is on the order of $f(n)$. In our above example, $T(n)$ is on the order of n^{2}.
Code Examples

What is the Big O?

$3 n^{\wedge} 2+10 n \log n$	$O\left(n^{\wedge} 2\right)$
$n \log n+n / 2$	$O(n \log n)$
$0.01 n+100 n^{\wedge} 2$	$O\left(n^{\wedge} 2\right)$
$100 n+0.1 n^{\wedge} 2$	$O\left(n^{\wedge} 2\right)$
$5+0.001 n^{\wedge} 3+0.025 n$	$O\left(n^{\wedge} 3\right)$

Code Evaluation \#1

```
def exl( n )
    count = 0
    for i in range( n ):
        count += i
        etumn count
```


Code Evaluation \#2

```
def ex2( n ):
    count = 0
    for i in range( n ):
        count += 1
    for j in range( n ):
        count += 1
        ceturn count
```


Code Evaluation \#4

```
def ex4( n ):
    count = 0
    for i in range( n ):
        for j in range( 25 ):
            count += 1
                count
```


Code Evaluation \#6

def ex6 $(\mathrm{n}):$
count $=0$
$i=n$
while $i>=1:$
count $+=1$
$i=i / / 2$
return count

Code Evaluation \#7
def ex6(n):
count $=$
$i=n$
While $i>=1$
count $+=1$
$i=i / / 2$
ceturn count
def ex7(n):
count $=0$
i in range (n) count $+=$ ex6(n

