
1/26/2020

1

CSCI 204: Data Structures &
Algorithms

Recursion 2

1

Recursive binary search
• Idea:

– Compare the target with the list item in the middle

– If found, stop;

– If target is greater than the middle, search the second half,
otherwise, search the first half

• Base case(s):
– Found or the list is exhausted

• Recursive case:
– Search the first half
– Search the second half

Recursive binary search Check if a number is a prime

• Ideas: to determine if b is a prime, we check if b % x
== 0 (divisible) consecutively …

• E.g., 5: we check 5%4, 5%3, 5%2, 5%1, when x
reaches 1, we know 5 is a prime

• E.g., 6: we check 6%5, 6%4, 6%3 which is 0, stop, 6 is
not a prime

List all permutations

• Make every element in the list as a prefix, one at a
time, do it recursively

• E.g., ‘abcd’

– ‘a’ + recursively(‘bcd’)

– ‘b’ + recursively(‘acd’)

– ‘c’ + recursively(‘abd’)

– ‘d’ + recursively(‘abc’)

Now let’s do the workshop. 6

The 8-Queens Problem

 The task is to place 8 queens onto a
chessboard such that no queen can
attack another queen.

 Uses a standard 8 x 8 chess board.

 There are 92 solutions to this
problem.

1/26/2020

2

7

Queen’s Moves

 The queen can move and attack any
piece of the opponent by moving in
any direction along a straight line.

8

Sample Solutions

9

4-Queens Problem
 To develop an algorithm, we

consider the smaller 4-queens
problem.

 Since no two queens can occupy
the same column, we can proceed
one column at a time.

 Place a queen in position (0, 0).

10

4-Queens Problem

 This move eliminates a number of
squares for the placement of
additional queens.

11

4-Queens Problem

 We move to the second column and
place a queen at position (2, 1)

12

4-Queens Problem
 The 3rd queen should be placed in

the 3rd column.

 But there are no open cells in the
third column.

 So there is no solution based on
the placement of the first 2
queens.

1/26/2020

3

13

4-Queens Problem

 We have to backtrack:

 go back to the previous column

 pickup the last queen placed

 try to find another valid cell in
that column.

14

4-Queens Problem

 Place a queen at position (3,1) and
move forward.

15

4-Queens Problem

 In the 3rd column, we can now place
a queen at position (1,2).

 But now we have no open slots in
the 4th column.

16

4-Queens Problem

 We again must backtrack and pick
up the queen from the 3rd column.

 But there are no other empty cells
in the 3rd column.

17

4-Queens Problem

 We must backtrack yet again and
pick up the queen from the 2rd

column.

 But there are no other empty cells
in the 2nd column either.

18

4-Queens Problem

 So we backtrack one more time and
pick up the queen from the 1st

column.

 We then try again to place a queen
in the 1st column.

1/26/2020

4

19

4-Queens Problem

 In the 1st column, we can place a
queen at position (1, 0).

20

4-Queens Problem

 We again continue with the process
and attempt to find open positions
in each of the remaining columns.

 We can use a similar approach to
solve the original 8-queens
problem.

21

N-Queens Board ADT
 The n-queens board is used for positioning

queens on a square board for use in
solving the n-queens problem.

 consists of n x n squares.

 each square is identified by index [0...n)

 NQueensBoard(n)

 size()

 numQueens()

 unguarded(row, col)

 placeQueen(row, col)

 removeQueen(row,
col)

 reset()

 draw() 22

8-Queens Solution

def solveNQueens(board, col):

if board.numQueens() == board.size() :

return True

else :

for row in range(board.size()):

if board.unguarded(row, col):

board.placeQueen(row, col)

if board.solveNQueens(board, col+1) :

return True

else :

board.removeQueen(row, col)

return False

