
1/26/2020

1

CSCI 204: Data Structures &
Algorithms

Recursion 2

1

Recursive binary search
• Idea:

– Compare the target with the list item in the middle

– If found, stop;

– If target is greater than the middle, search the second half,
otherwise, search the first half

• Base case(s):
– Found or the list is exhausted

• Recursive case:
– Search the first half
– Search the second half

Recursive binary search Check if a number is a prime

• Ideas: to determine if b is a prime, we check if b % x
== 0 (divisible) consecutively …

• E.g., 5: we check 5%4, 5%3, 5%2, 5%1, when x
reaches 1, we know 5 is a prime

• E.g., 6: we check 6%5, 6%4, 6%3 which is 0, stop, 6 is
not a prime

List all permutations

• Make every element in the list as a prefix, one at a
time, do it recursively

• E.g., ‘abcd’

– ‘a’ + recursively(‘bcd’)

– ‘b’ + recursively(‘acd’)

– ‘c’ + recursively(‘abd’)

– ‘d’ + recursively(‘abc’)

Now let’s do the workshop. 6

The 8-Queens Problem

 The task is to place 8 queens onto a
chessboard such that no queen can
attack another queen.

 Uses a standard 8 x 8 chess board.

 There are 92 solutions to this
problem.

1/26/2020

2

7

Queen’s Moves

 The queen can move and attack any
piece of the opponent by moving in
any direction along a straight line.

8

Sample Solutions

9

4-Queens Problem
 To develop an algorithm, we

consider the smaller 4-queens
problem.

 Since no two queens can occupy
the same column, we can proceed
one column at a time.

 Place a queen in position (0, 0).

10

4-Queens Problem

 This move eliminates a number of
squares for the placement of
additional queens.

11

4-Queens Problem

 We move to the second column and
place a queen at position (2, 1)

12

4-Queens Problem
 The 3rd queen should be placed in

the 3rd column.

 But there are no open cells in the
third column.

 So there is no solution based on
the placement of the first 2
queens.

1/26/2020

3

13

4-Queens Problem

 We have to backtrack:

 go back to the previous column

 pickup the last queen placed

 try to find another valid cell in
that column.

14

4-Queens Problem

 Place a queen at position (3,1) and
move forward.

15

4-Queens Problem

 In the 3rd column, we can now place
a queen at position (1,2).

 But now we have no open slots in
the 4th column.

16

4-Queens Problem

 We again must backtrack and pick
up the queen from the 3rd column.

 But there are no other empty cells
in the 3rd column.

17

4-Queens Problem

 We must backtrack yet again and
pick up the queen from the 2rd

column.

 But there are no other empty cells
in the 2nd column either.

18

4-Queens Problem

 So we backtrack one more time and
pick up the queen from the 1st

column.

 We then try again to place a queen
in the 1st column.

1/26/2020

4

19

4-Queens Problem

 In the 1st column, we can place a
queen at position (1, 0).

20

4-Queens Problem

 We again continue with the process
and attempt to find open positions
in each of the remaining columns.

 We can use a similar approach to
solve the original 8-queens
problem.

21

N-Queens Board ADT
 The n-queens board is used for positioning

queens on a square board for use in
solving the n-queens problem.

 consists of n x n squares.

 each square is identified by index [0...n)

 NQueensBoard(n)

 size()

 numQueens()

 unguarded(row, col)

 placeQueen(row, col)

 removeQueen(row,
col)

 reset()

 draw() 22

8-Queens Solution

def solveNQueens(board, col):

if board.numQueens() == board.size() :

return True

else :

for row in range(board.size()):

if board.unguarded(row, col):

board.placeQueen(row, col)

if board.solveNQueens(board, col+1) :

return True

else :

board.removeQueen(row, col)

return False

