CSCI 204: Data Structures \& Algorithms

Recursion 2

Recursive binary search

- Idea:
- Compare the target with the list item in the middle
- If found, stop;
- If target is greater than the middle, search the second half, otherwise, search the first half
- Base case(s):
- Found or the list is exhausted
- Recursive case:
- Search the first half
- Search the second half

Recursive binary search

if left > right: \# not found
if left > right: \# not found
id = (Left + right) // 4 N
id = (Left + right) // 4 N
Mif rens |mid] < target: \# search for upper half
Mif rens |mid] < target: \# search for upper half
Leturn bin_search(rumus, target, left, right)
Leturn bin_search(rumus, target, left, right)

manmen
manmen
Ma,m,
Ma,m,

List all permutations

- Make every element in the list as a prefix, one at a time, do it recursively
- E.g., 'abcd'
- 'a' + recursively('bcd')
- 'b' + recursively('acd')
$-{ }^{\prime} c^{\prime}+$ recursively('abd')
- 'd' + recursively('abc')

Now let's do the workshop.

Check if a number is a prime

- Ideas: to determine if b is a prime, we check if $b \% x$ == 0 (divisible) consecutively ...
- E.g., 5 : we check $5 \% 4,5 \% 3,5 \% 2,5 \% 1$, when x reaches 1 , we know 5 is a prime
- E.g., 6 : we check $6 \% 5,6 \% 4,6 \% 3$ which is 0 , stop, 6 is not a prime
- The task is to place 8 queens onto a chessboard such that no queen can attack another queen.
- Uses a standard 8×8 chess board.
- There are 92 solutions to this problem.

Queen's Moves

- The queen can move and attack any piece of the opponent by moving in any direction along a straight line.

Sample Solutions

4-Queens Problem

- To develop an algorithm, we consider the smaller 4-queens problem.
- Since no two queens can occupy the same column, we can proceed one column at a time.
- Place a queen in position (0,0).

4-Queens Problem

- We move to the second column and
place a queen at position $(2,1)$

畨	x	x	x
x	x	x	
x	ω	x	
x	x	x	x

4-Queens Problem

- This move eliminates a number of squares for the placement of additional queens.

畨	x	x	x
x	x		
x		x	
x			x

4-Queens Problem

- The $3^{\text {rd }}$ queen should be placed in the $3^{\text {rd }}$ column.
- But there are no open cells in the third column.
- So there is no solution based on the placement of the first 2 queens.

W.	x	x	x
x	x	x	
x	\boldsymbol{w}	x	
x	x	x	x

4－Queens Problem

－We have to backtrack：
－go back to the previous column
－pickup the last queen placed
－try to find another valid cell in that column．

畨	x	x	x
x	x		
x		x	
x			x

4－Queens Problem

－In the $3^{\text {rd }}$ column，we can now place a queen at position（1，2）．
－But now we have no open slots in the $4^{\text {th }}$ column．

类	x	x	x
x	x	$\boldsymbol{\omega}$	x
x	x	x	x
x	U	x	x

4－Queens Problem

－Place a queen at position $(3,1)$ and move forward．

$\boldsymbol{\omega}$	x	x	x
x	x		
x	x	x	
x	$\boldsymbol{\omega}$	x	x

4－Queens Problem

－We again must backtrack and pick up the queen from the $3^{\text {rd }}$ column．
－But there are no other empty cells in the $3^{\text {rd }}$ column．

业	x	x	x
x	x	x	
x	x	x	
x	震	x	x

4－Queens Problem

－We must backtrack yet again and pick up the queen from the $2^{\text {rd }}$ column．
－But there are no other empty cells in the $2^{\text {nd }}$ column either．

wiw	x	x	x
x	x		
x	x	x	
x	x		x

4－Queens Problem

－So we backtrack one more time and pick up the queen from the $1^{\text {st }}$ column．
－We then try again to place a queen in the $1^{\text {st }}$ column．

4-Queens Problem

- In the $1^{\text {st }}$ column, we can place a queen at position (1,0).

x	x		
䒼	x	x	x
x	x		
x		x	

N-Queens Board ADT

- The n-queens board is used for positioning queens on a square board for use in solving the n-queens problem.
- consists of $n \times n$ squares.
- each square is identified by index [0...n)

- NQueensBoard(n)	- placeQueen(row, col)
- size()	- removeQueen(row,
- numQueens()	- reset()
- unguarded(row, col)	- draw()

4-Queens Problem

- We again continue with the process and attempt to find open positions in each of the remaining columns.
- We can use a similar approach to solve the original 8-queens problem.

8-Queens Solution

def solveNQueens (board, col):
if board.numQueens() == board.size() :
return True
else :
for row in range(board.size()):
if board. unguarded (row, col):
board.placeQueen (row, col)
if board. solveNQueens (board, col+1)
return True
else
board.removeQueen (row, col)
return False

