Python Recursion Workshop 2
CSCI 204

Solve the following problems using recursion. You can work in pair or alone. Use whichever Python
environment you feel comfortable.

1. Determine if a non-negative integer b is a prime. The basic idea is to check consecutively if b is
divisible by b - 1, b - 2, b - 3, until 1. This can be done by checking if b % x == 0. If any of the
b - i can divide b evenly, then b is not a prime, we can stop. If we are able to reach the check b %
1, it means b is a prime.
For example, for 5, we check 5%4, 5%3, 5%2, until 5%1, none is equal to zero, so 5 is a prime.
For example, for 6, we check 6%5, 6%4, 6%3 is equal to zero, so 6 is not a prime.

2. List all permutations of a string s. For example, if we have a string ‘abc’, the complete list of its
permutations are ‘abc’, ‘acb’, ‘bac’, ‘bca’, ‘cab’, ‘cba’. The idea is to take out one element of the
list at a time, make it a part of the prefix which starts as an empty string. Then recursively pursue
the step until all elements in the string become a part of the prefix.

E.g., ‘abed’
a. ‘a’ +recursively(‘bcd’)
b. ‘b’ + recursively(‘acd’)
C. ‘c’ +recursively(‘abd’)
d. <d’ +recursively(‘abc’)



