
Python Recursion Workshop 2

CSCI 204

solution

Solve the following problems using recursion. You can work in pair or alone. Use whichever Python

environment you feel comfortable.

1. Determine if a non-negative integer b is a prime. The basic idea is to check consecutively if b is

divisible by b - 1, b - 2, b - 3, until 1. This can be done by checking if b % x == 0. If any of the

b - i can divide b evenly, then b is not a prime, we can stop. If we are able to reach the check b %

1, it means b is a prime.

For example, for 5, we check 5%4, 5%3, 5%2, until 5%1, none is equal to zero, so 5 is a prime.

For example, for 6, we check 6%5, 6%4, 6%3 is equal to zero, so 6 is not a prime.

def is_prime(b, x):

 """Check to see if 'b' is a prime. x == b - 1"""

 if x == 1:

 return True

 elif b % x == 0:

 return False

 else:

 return is_prime(b, x - 1)

print('is_prime(5, 4) ', is_prime(5,4))

print('is_prime(13, 12) ', is_prime(13, 12))

print('is_prime(20, 19) ', is_prime(20,19))

print('is_prime(33, 32) ', is_prime(33, 32))

2. List all permutations of a string s. For example, if we have a string ‘abc’, the complete list of its

permutations are ‘abc’, ‘acb’, ‘bac’, ‘bca’, ‘cab’, ‘cba’. The idea is to take out one element of the

list at a time, make it a part of the prefix which starts as an empty string. Then recursively pursue

the step until all elements in the string become a part of the prefix.

E.g., ‘abcd’

a. ‘a’ + recursively(‘bcd’)

b. ‘b’ + recursively(‘acd’)

c. ‘c’ + recursively(‘abd’)

d. ‘d’ + recursively(‘abc’)

def list_permutations(prefix, s):

 """

 List all permutations of a string

 """

 if len(s) == 0:

 print(prefix)

 else:

 for i in range(len(s)):

 ch = s[i]

 rest = s[0:i] + s[(i + 1):]

 list_permutations(prefix + ch, rest)

list_permutations('', 'XYZ')

#list_permutations('', 'ABCD')

