
1/17/2020

1

Implementing the 2-D Array

 There are various approaches that can be used to
implement a 2-D array.

 Use a single 1-D array with the elements arranged by row
or column.

 Use a 1-D array of 1-D arrays.

 Use lists

1

Array of Arrays Implementation

 Each row is stored within its own 1-D array.
 A 1-D array is used to store references to each row array.

2

How are the dimensions represented? Number of rows, number of columns?

2-D Array Implementation

class Array2D :

def __init__(self, n_rows, n_cols):

self._the_rows = Array(numRows)

for i in range(n_rows) :

self._the_rows[i] = Array(n_cols)

def num_rows(self):

return len(self._the_rows)

def num_cols(self):

return len(self._the_rows[0])

def clear(self, value = 0):

for row in range(self.num_rows()):

row.clear(value)

3

array.py

2-D Array Implementation

 Subscript notation:

y = x[r, c] x[r, c] = z

 Subscripts are passed to the methods as a tuple.

 Must verify the size of the tuple.

4

2-D Array Implementation

class Array2D :

...

def __getitem__(self, ndx_tuple):

assert len(ndx_tuple) == 2, "Invalid number of array subscripts."

row = ndx_tuple[0]

col = ndx_tuple[1]

assert row >= 0 and row < self.num_rows() \

and col >= 0 and col < self.num_cols(), \

"Array subscript out of range."

the_row_array = self._the_rows[row]

return the_row_array[col]

5

array.py

2-D Array Implementation

class Array2D :

...

def __setitem__(self, ndx_tuple, value):

assert len(ndx_tuple) == 2, "Invalid number of array subscripts."

row = ndx_tuple[0]

col = ndx_tuple[1]

assert row >= 0 and row < self.num_rows() \

and col >= 0 and col < self.num_cols(), \

"Array subscript out of range."

the_row_array = self._the_rows[row]

the_row_array[col] = value

6

array.py

1/17/2020

2

CSCI 204: Data Structures &
Algorithms

Object-Oriented Design

7

Object-Oriented Design is the process of planning a
system of interacting objects for the purpose of solving
a software problem. It is one approach to software
design.

Object-Oriented Design is the process of planning a system of
interacting objects for the purpose of solving a software
problem. It is one approach to software design.

• Objects – Any physical or logical elements.

• Objects are distinguished first by their classification (or just class)

– Objects classified as Dogs are different than you and I, which are
classified as Human

• Objects of a specific class are called instances of the class.

– You and I are instances of Human

• Objects have a set of characteristics that make them unique
– What are some of our characteristics that make each of us

unique?
• Eye color, Hair color, Sleeping, Hungry

– In O-O terminology, these are called attributes, or fields, or
properties

• Characteristics (attributes) have values
– These values determine the state of an object at any time
– Most values are temporal, changing over time (for example,

hair!)
• NOTE - If they are not temporal, then they may make good named

constants in your code

Examples of Classes and Objects

Fruit

• Characteristics (attributes)

– Name

– Color

– Weight

• Methods

– be_eaten()

1/17/2020

3

Apple(Fruit)

• Additional attributes

– None

• Additional methods

– throw()

Orange(Fruit)

• Additional features

– None

• Additional methods

– squeeze()

Person

• Attributes
– Name

– Age

– Place_of_birth

• Methods
– eat()

– walk()

– sleep()

Student(Person)

• Attributes
– Major

– Class_year

– GPA

• Methods
– attend_class()

– take_exam()

– play_club_sports()

Employee(Person)

• Attributes

– Department

– Work_schedule

• Methods

– get_paid()

– attend_meeting()

Your example(s)?

1/17/2020

4

Encapsulation and O-O design
• Encapsulation

– The grouping of data and methods together into one
package in such a way that the internal representation
of the object is hidden

– All interaction with the object is performed only through
the object's methods

– Why is encapsulation an important part of the design
process?
• An object should always manage its own internal state!
• An object is responsible for itself and how it carries out its

own actions

Encapsulation Example

• Our Array class example:

– How Array class is defined is hidden, whether an array
of ctype objects, or a Python list

– To the outside world, all we need to know is how to
use it

grades = Array2D(7, 3)

OO Design: Coupling vs. Cohesion
• Coupling – (aka dependency) – the degree to which each object

relies on all of the other objects in the system
• Cohesion – the degree to which all of the functionality in an object

are related
• What does a good OOD strive for?

– Low coupling
• High coupling means high interclass dependencies
• Minimize coupling to avoid a "snowball effect" of change in one class

– High cohesion
• All public data and methods should all be related directly to the

concept the class represents

Relationship: Inheritance

• The strongest class relationship

• Models the “is-a” relationship

• From an SE view, inheritance is POWERFUL, yet
simple concept.

– Idea – extend what you already have by adding
only those capabilities / features you need

– It can save an enormous amount of development
time through code reuse!

22

Example: Vehicles

What attributes do
objects of Sedan
have?

What attributes do
objects of Truck
have?

big_bird = Bird()

big_bird.fly()

big_bird.eat(20)

big_bird.fly()

Code Example for Class Bird

1/17/2020

5

wheezy = Penguin()

wheezy.fly()

wheezy.eat(10)

wheezy.swim()

Class Penguin that
inherits from class Bird

Design Exercise

• Take out your computer

• Write the code for class Vehicle and its subclasses Car
and Truck in a file named vehicle.py

• Write the code in a separate file named
vehicle_app.py for testing the Vehicle class that
creates a few Car and Truck objects and prints their
information.

