1/17/2020




1/17/2020




1/17/2020




Encapsulation and 0-O design
¢ Encapsulation

— The grouping of data and methods together into one
package in such a way that the internal representation
of the object is hidden

— All interaction with the object is performed only through
the object's methods

— Why is encapsulation an important part of the design
process?
* An object should always manage its own internal state!

* An object is responsible for itself and how it carries out its
own actions

00 Design: Coupling vs. Cohesion
Coupling — (aka dependency) — the degree to which each object
relies on all of the other objects in the system

Cohesion — the degree to which all of the functionality in an object
are related

What does a good OOD strive for?
— Low coupling
 High coupling means high interclass dependencies
* Minimize coupling to avoid a "snowball effect" of change in one class
— High cohesion

« All public data and methods should all be related directly to the
concept the class represents

Example: Vehicles

What attributes do Vehicte
objects of Sedan
have?

v
FueiCapacity
LoadCapait,

>
AN —r—
/ {

What attributes do
objects of Truck
have?

1/17/2020

Encapsulation Example

e Our Array class example:

— How Array class is defined is hidden, whether an array
of ctype objects, or a Python list

— To the outside world, all we need to know is how to
use it

grades = Array2D(7, 3)

Relationship: Inheritance

¢ The strongest class relationship
* Models the “is-a” relationship

* From an SE view, inheritance is POWERFUL, yet
simple concept.

— Idea — extend what you already have by adding
only those capabilities / features you need

— It can save an enormous amount of development
time through code reuse!

Code Example for Class Bird

class Bird:

color - 'Yellow’ big_bird = Bird()
init__Cself:
self.weight 10
big_bird.fly()

pH
f.weight -15:
self.lightenTheLoad()

CUFLYIN big_bird.eat(20)
def lightenThe
¢'spl

big_bird.fly()



1/17/2020

Class Penguin that Design Exercise
inherits from class Bird

* Take out your computer
* Write the code for class Vehicle and its subclasses Car

wheezy = Penguin() and Truck in a file named vehicle.py

wheezy.fly() * Write the code in a separate file named

wheezy.eat(10) vehicle_app.py for testing the Vehicle class that

wheezy.swim() creates a few Car and Truck objects and prints their
information.




