
1/15/2020

1

CSCI 204: Data Structures &
Algorithms

2D Arrays, Lists, and
User Modules

1

Arrays And Lists

 An array has to be created and initialized before it can be
used.

 elements are like any other variable.
 we must keep track of the size of the array.

2

slots = [None for i in range(5)]

for i in range(len(slots)):

print(slots[i])

List: Construction

 The Python list interface provides an abstraction to the
actual underlying implementation.

3

py_list = [4, 12, 2, 34, 17]

2-D Arrays

 Arrays of 2 or more dimensions are not supported at the
hardware level.
 Most languages provide some mechanism for creating

and managing multi-dimensional arrays.
 2-D arrays are very common data structure in

computer science.

4

2-D Array ADT

 A 2-D array consists of a collection of elements organized
into rows and columns.
 Elements are referenced by row and column index

(start at 0).
 Once created, array size can not be changed.

5

 Array2D(nrows, ncols)

 num_rows()

 num_cols()

 clear(value)

 getitem(i1, i2)

 setitem(i1, i2, value)

2-D Array Example

 Suppose we have a text file containing exam grades for
multiple students.
 Extract the grades from the file.
 Store them in a 2-D array.
 Compute the average exam grades.
 Example: n (7) students with m (3) grades each

6

7

3

90 96 92

85 91 89

82 73 84

69 82 86

95 88 91

78 64 84

92 85 89

1/15/2020

2

Open the data file
grade_file = open(filename, "r")

Read number of exams and number of students
num_students = int(gradeFile.readline())

num_exams = int(grade_file.readline())

Create a 2-D array
exam_grades = Array2D(num_students, num_exams)

Read the grades into the array

How to tackle the problem?

7

i = 0

for student in grade_file :

grades = student.split()

for j in range(num_exams):

exam_grades[i,j] = int(grades[j])

i += 1

2-D Array Example

#from array_list import Array2D

from array import Array2D

Open the text file for reading.

grade_file = open(filename, "r")

Extract the first two values; indicate the size of the array.

num_exams = int(grade_file.readline())

num_students = int(gradeFile.readline())

Create the 2-D array to store the grades.

exam_grades = Array2D(num_students, num_exams)

Extract the grades from the remaining lines.

i = 0

for student in grade_file :

grades = student.split()

for j in range(num_exams):

exam_grades[i,j] = int(grades[j])

i += 1

Close the text file.

grade_file.close()

8

avggrades.py

2-D Array Example

 The contents of the 2-D array produced by the previous
code segment.

9

7

3

90 96 92

85 91 89

82 73 84

69 82 86

95 88 91

78 64 84

92 85 89

2-D Array Example

Compute each student's average exam grade.

for i in range(num_students) :

total = 0

for j in range(num_exams) :

total += exam_grades[i,j]

exam_avg = total / num_exams

print("%2d: %6.2f" % (i+1, exam_avg))

10

avggrades.py

How to compute the average for the class?

Implementing the 2-D Array

 There are various approaches that can be used to
implement a 2-D array.
 Use a single 1-D array with the elements arranged by

row or column.
 Use a 1-D array of 1-D arrays.
 Use lists

11

Array of Arrays Implementation

 Each row is stored within its own 1-D array.
 A 1-D array is used to store references to each row array.

12

1/15/2020

3

2-D Array Implementation

class Array2D :

def __init__(self, n_rows, n_cols):

self._the_rows = Array(numRows)

for i in range(n_rows) :

self._the_rows[i] = Array(n_cols)

def num_rows(self):

return len(self._the_rows)

def num_cols(self):

return len(self._the_rows[0])

def clear(self, value = 0):

for row in range(self.num_rows()):

row.clear(value)

13

array.py

2-D Array Implementation

 Subscript notation:
y = x[r, c] x[r, c] = z

 Subscripts are passed to the methods as a tuple.
 Must verify the size of the tuple.

14

2-D Array Implementation

class Array2D :

...

def __getitem__(self, ndx_tuple):

assert len(ndx_tuple) == 2, "Invalid number of array subscripts."

row = ndx_tuple[0]

col = ndx_tuple[1]

assert row >= 0 and row < self.num_rows() \

and col >= 0 and col < self.num_cols(), \

"Array subscript out of range."

the_row_array = self._the_rows[row]

return the_row_array[col]

15

array.py

2-D Array Implementation

class Array2D :

...

def __setitem__(self, ndx_tuple, value):

assert len(ndx_tuple) == 2, "Invalid number of array subscripts."

row = ndx_tuple[0]

col = ndx_tuple[1]

assert row >= 0 and row < self.num_rows() \

and col >= 0 and col < self.num_cols(), \

"Array subscript out of range."

the_row_array = self._the_rows[row]

the_row_array[col] = value

16

array.py

User Modules in Python

Notice that in Python programs, one can use any previously defined modules.
You have seen statements such as

import datetime
import matplotlib

These are system defined modules, or modules defined by other programmers
that now become standard.

You can define your own, such as the example we see in

from array_list import Array2D

