
CSCI 479 Developing GUIs in Java Fall 2009

Objectives:

1. To explore GUIs in Java.

2. To write Java applications that have windows, simple graphics, GUI components, and menus.

3. To use Java listeners for event handling.

Preparation: Before attempting the exercises, read the following chapters in Java: How to Program by
Deitel and Deitel, eighth edition, Chap. 14GUI Components: Part 1, Chap. 15Graphics and Java 2D,
Chap. 25GUI Components: Part 2. The sixth and seventh editions have similar chapters but are numbered
differently.

Assignment:

These exercises gets you started in writing window-based Java applications, i.e., GUIs.

Exercise 1. Using the Java API:
Java is a smaller and cleaner language than C++. Chapters 1-11, and 16 of the Java text cover most
of the language except threads (Chapter 26). The reason why programmers like Java is the HUGE
standardApplication Programming Interface (API). Sun’s API includes classes for developingGraph-
ical User Interfaces (GUIs), multimedia, networking, web-based computing, database connectivity,
distributed objects (RMI and CORBA), security and others. This is the fun part of programming in
Java!

Take a few minutes and explore Sun’s API for Java 2, Standard Edition 6 at URL:

http://java.sun.com/javase/6/docs/api/

You should become comfortable looking up stuff in API. Make it a habit. Don’t memorize. Look it
up!

Many other Java APIs are available from third party sources.You only need to Goggle search the Web
with “java api”.

Exercise 2. A Window-based Java Application:
Below is the bare bones of a Java application that opens a frame (window). The application uses
JFrame class which is part of theswingAPI. See pages 561 and beyond in Java text.

import javax.swing.JFrame;

public class Viewer {

public static void main(String[] args) {

JFrame frame = new JFrame();

// Set size of frame
frame.setSize(250, 250);

CSCI 479 Fall 2009 1 Developing GUIs in Java



// Set title in top bar
frame.setTitle("View a frame");

// Action to do when frame is closed
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Insert components here

// Make frame visible
frame.setVisible(true);

}
}

Copy the code to a file, compile and run it.

The above skelton is an excellent start for any window-basedJava application.

Exercise 3. Adding GUI Components to the Frame:
GUIs are built by addingGUI components to a frame. Some possible components are text fields,
labels, buttons, check boxes and radio buttons. See Chapter14 of Java text.

Copy the file from Exercise 2 to a new file and set the layout for the window toFlowLayout by

frame.setLayout(new FlowLayout());

To the frame add twoJLabel objects initialized to some text.

FlowLayout says to place the components one after the other until the components no longer fit across
the window then start a new row. Layouts in Java take a little getting use to. The idea is that when a
user resizes the window the components flow around to fit the new window size.

After displaying the twoJLabel objects, adjust the size and shape of the window to see the behavior.

Exercise 4. Adding JTextField and a Listener:
In this exercise we will add alistener to capture the text typed in aJTextField. Listeners are the way
Java’s API does event handling. See Chapter 14 of Java text.

Copy the file from Exercise 3 to a new file. Create a second class, e.g., MyComponent1, where you
pass the frame object as a parameter to the constructor.

MyComponent1 forTextField = new MyComponent1(frame);

The reason for doing this is that you can’t create instance fields (variables) and access them in a main
method because it is static.

In the class MyComponent1 add an instance fieldJTextField object of width of 20 characters In the
constructor, add theJTextField object to the frame, create a newTextFieldHandler object and add
theJTextField object toActionListener. See page 568 in Java text for information onJTextField.
Create your own inner class to handle the event and call itTextFieldHandler. Display what is typed
in the JTextField object in the shell window usingSystem.out.println(). Since the listener inner
class needs to access theJTextField object, we made it an instance field.

CSCI 479 Fall 2009 2 Developing GUIs in Java



Exercise 5. Adding a Menu:
Menus are an important part of GUIs. See section 25.4 starting on page 1019 of Java text.

Copy the file from Exercise 4 into a new file. Add a menu bar with the label “File” that has an “Exit”
item on it to quit the program. This code can be added to the Viewer class.

When you run it, notice that the new menu bar shifts theJLabel andJTextField components down to
make room.

Exercsie 6. Adding Simple Graphics to the Window:
Drawing lines, rectangles, and circles are easy in Java but abit tricker if you want to draw as well as
have other graphical components on the screen. See Chapter 15 of Java text.

Copy the file from Exercise 5 to a new file.

You shouldavoid the older approach ofAWT which used thepaint() method. We strongly urge you
to use the newer and much improvedswingapproach which usespaintComponent(). For example, if
you have a Java program with an animation,paintComponent()will refresh the screen automatically
for you whilepaint() does not.

To usepaintComponent(), you must create aJPanel object. AJPanel creates a drawing area for
graphics. See pages 138-141 aboutJPanel. A good way to do this is to create a second file with
a class thatextendstheJPanelclass, e.g.,MyJPanel. Inside this extended class insert yourpaint-
Component() method. You will need to addsuper.paintComponent(g); as thefirst line of your
paintComponent()method, otherwise you will not see the graphical componentslike JTextfield.

Add lines in thepaintComponent() method to display an orange rectangle and some blue text. See
Chapter 15 of Java text for details.

BEFORE you create an object ofMyJPanel and add it to the frame, you need to be careful with
your Java layout. In Java the default layout isBorderLayout , which has five regions, NORTH (top),
SOUTH (bottom), EAST (right), WEST (left) and CENTER. If youdon’t specify when you add a
component, it goes in the CENTER. If you add two components tothe CENTER, the second over-
writes the second. It is very easy to do this and find yourself cursing “Where in the Heck is my
drawing?”

SinceJPanels and FlowLayout don’t seem to get along, change your programto useBorderLayout
and place the panel in the CENTER, the twoJLabels to NORTH and WEST and theJTextField to
SOUTH.

To create a line border around the panel, use the following line right after you create the panel.

panel.setBorder(BorderFactory.createLineBorder(Color.black));

If you want to use methods from Graphics2D library, cast g to g2 such as

// Recover Graphics2D
Graphics2D g2 = (Graphics2D) g;

When you run yourpaintComponent() method you override thepaintComponent() method in the
superclassJPanel. JPanelautomatically calls thepaintComponent()method after creating the frame
and after anyexpose window event. Your Java frame receives an expose window event when the
window is minimized (made an icon) and then maximized (icon opened). An expose event also
happens when the window is redrawn after another window has overlapped it. Try both of these
situations to see what happens.

CSCI 479 Fall 2009 3 Developing GUIs in Java



Hand in

For Exercise 6, hand in the java code and a snapshot of the screen. Use the Linux toolxv to take a
snapshot of the window. Print the java code using thea2pscommand.

CSCI 479 Fall 2009 4 Developing GUIs in Java


