
Physics 317 – Chowdary        
Thermodynamics and Statistical Physics                                   
Fall 2005                      

Homework #25, due Mon. Oct. 31 
Computer Exercise #4 (below),  

6.23 (keep as many terms as you need for the sum to converge), 6.26 (no need to sketch), 6.31  
 
 

Computer Exercise #4 
Rotational Partition Function and Heat Capacity 

 
 
In this Computer Exercise, you’ll use a computer to help you calculate the rotational partition function.  You’ll also 
use the computer to calculate the average energy per particle, as well as calculating and plotting the heat capacity 
per particle.  Our goal is to develop a graph of the heat capacity per particle vs. (reduced) temperature that shows 
the low temperature, intermediate temperature, and high temperature behavior. 
 
Background 
 For a diatomic molecule made of distinguishable atoms like CO or HCl, the allowed rotational energies are 
quantized:  ε+= )1()( jjjE   where K,2,1,0=j  and ε  is some constant that is inversely proportional to the 

molecules moment of inertia.  The number of different states with the same energy )( jE  is the degeneracy of the 

state j .  We call this degeneracy 12))(( += jjEg . 
 
 So the partition function associated with the rotational energy levels (“the rotational partition function”) is  
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High Temperature Limit 
 In the limit that 1/ >>ε⇒ε>> kTkT  or equivalently 1<<βε⇒ε<<β , this sum is well 
approximated by an integral, and we get the results summarized in eqs. (6.31) and (6.32). 
 
This analysis can also extend to diatomic molecules with identical atoms or even polyatomic atoms; in those cases 
you need to adjust the partition factor to account for any symmetries (see the discussion preceding Problem 6.23 on 
p. 236). 
 
General Solution 
 
 In the low temperature limit, the sum in the partition function can’t be approximated by an integral.  So we 
must explicitly carry out the sum.  The advantage is that we usually don’t have to carry out too many terms in the 
sum, since each successive term gets smaller and smaller.  And doing an explicit summation will also give us the 
high temperature behavior as well.  To start, we’ll sum up to and including the 6=j  level. 
 
 This is ideally suited for a symbolic manipulation program like Mathematica.  If you’d like to use another 
program like Maple, please feel free.  This is not a task for which a spreadsheet program like Excel is suited.  I’ve 
given you the core Mathematica commands that you will need to use; for those of you with experience in 
Mathematica you should feel free to modify the core commands as you see fit.  Mathematica is extremely powerful, 
but it is also very finicky, so you must make sure to type in exactly what I have provided you.  To execute a 
command (“evaluate a cell”), hit Enter on the numeric keypad or Shift+Enter on the keyboard. 
 
 



Mathematica Commands 
 
Begin by typing 

z = Sum@H2 j+ 1L Exp@−j Hj+1L ∗ b∗epsD, 8j, 0, 6<D  
 
Here, b is β  and eps is ε .  I hope the rest of the syntax is self explanatory.  Evaluate this cell. 
 
Next, type  

energy= −H1êzL ∗D@z, bD ê. b→ 1êHk∗TL  

Here, D[z, b] is 
B
Z
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, so that energy is the average energy per particle.   

The last part, /.b à 1/(k*T) is a little obscure.  After the derivative is taken, this command replaces 

every instance of b with 1/(k*T).   
 
Question:  Why might we want to replace every instance of b with 1/(k*T)?  (Hint:  consider how we’ll 
obtain the heat capacity per particle from the average energy per particle.) 
 
Next, type 

heatcap = D@energy, TD ê.T→ t∗epsêk  

Here, heatcap is the heat capacity per particle, and D[energy, T] is 
T
E

∂
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.   

The /.T à t*eps/k in this line is simply for sake of being able to plot in reduced temperature 
ε= /kTt , as we’ve done many times before. 

 
Finally, type  

Plot@heatcapêk, 8t, 0.0001,3<, PlotRange→ 880, 3<,80, 1.2<<, Frame→TrueD
 
to plot the dimensionless heat capacity per particle vs. the reduced temperature. 
 
Analysis 
 
1)  Submit a clear, attractive version of this plot (an electronic version is fine).  Make sure the axes are labeled. 
 
2)  Comment on the “high” temperature behavior.  Does it display the value you expect?  Briefly discuss. 
 
3) Comment on the low temperature behavior.  Does this match your expectations from the Third Law of 
Thermodynamics? 
 
4)  Look at the graph around the region 1=t , which corresponds to ε=kT .  What do you notice about the value 
of the heat capacity per particle, especially compared to the high temperature limit? 
 
5)  Did we calculate enough terms in the partition function?  Do we need more?  Could we have gotten away with 
less?  Go to the first line, and change the 6 to 7; evaluate all the cells again.  Does the graph change noticeably?  
Next, reduce to 5, then 4, etc.  What’s your conclusion about the minimum number of terms we should calculate in 
the partition function over the range of reduced temperatures we are plotting? 
 
6)  Go back to the first line, and return the value to 6 (remember to evaluate the cell).  Now, go to the Plot line, and 
increase the 3 in both places until you can see the “high” temperature behavior deviate from its expected value.  
What can you conclude from this? 


