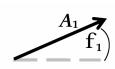
Method of Phasors

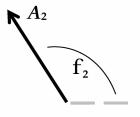
Question: How do you combine waves that overlap at some point in space?

Answer: Superposition - just add the oscillations!

Question: How do you add two harmonic oscillations of the same frequency and type:


$$E_1 = A_1 \sin(\omega t + \phi_1)$$
 and $E_2 = A_2 \sin(\omega t + \phi_2)$?

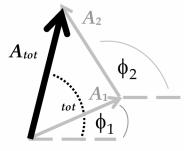
Answer: Use the method of phasors!


The method of phasors converts the addition of oscillations for different amplitudes and phases to the addition of phasors, which are just vectors.

The **amplitude** of the oscillation converts to the **magnitude** of the phasor.

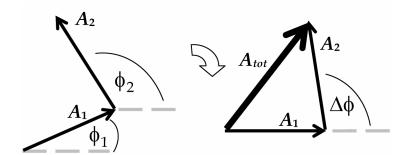
The **phase** of the oscillation converts to the **direction** of the phasor.

$$E_1 = A_1 \sin(\omega t + \phi_1)$$


$$E_2 = A_2 \sin(\omega t + \phi_2)$$

So to combine $\,E_1\,$ and $\,E_2\,$, we

add the corresponding phasors like vectors:


and convert back to oscillations. The amplitude of the combined oscillation is the magnitude of the resultant phasor; the phase of the combined oscillation is the direction of the resultant phasor

$$\Rightarrow E_{tot} = E_1 + E_2 = A_{tot} \sin(\omega t + \phi_{tot}).$$

$$E_{tot} = A_{tot} \sin(\omega t + \phi_{tot})$$

In most applications, we only care about the amplitude of the combined oscillation, even when more than two waves are combined. For that case, only the <u>phase difference</u> $\Delta \phi$ matters. Draw the first phasor horizontal, turn the next phasor by $\Delta \phi$ and add head to tail:

To add the vectors, use our standard method of components, and finish with

$$A_{tot} = \sqrt{A_{tot,x}^2 + A_{tot,y}^2}.$$